This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153893 a(n) = 3*2^n - 1. 18
 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS A020944(a(n)) = 0. - Reinhard Zumkeller, Mar 13 2011 a(n) + a(n-1)^2 is a perfect square. - Vincenzo Librandi, Oct 28 2011 Number of distinct continued fractions of n terms chosen from {1,2}. - Clark Kimberling, Jul 20 2015 Also, the decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. See A283508. - Robert Price, Mar 09 2017 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-2). FORMULA a(n) = a(n-1)*2 + 1, a(0)=2. a(n) = A083329(n+1). a(n) = A055010(n+1). G.f.: (2 - x)/((1-x)(1-2x)). - R. J. Mathar, Feb 13 2009 a(n) = A083416(2n) = A033484(n) + 1. - Philippe Deléham, Apr 14 2013 From G. C. Greubel, Sep 01 2016: (Start) a(n) = 3*a(n-1) - 2*a(n-2). E.g.f.: 3*exp(2*x) - exp(x). (End) MATHEMATICA Table[3*2^n - 1 , {n, 0, 25}] (* G. C. Greubel, Sep 01 2016 *) PROG (MAGMA) [3*2^n-1: n in [0..30]]; // Vincenzo Librandi, Oct 28 2011 (PARI) a(n)=3*2^n-1 \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Cf. A283508. Sequence in context: A060153 A086219 A055010 * A083329 A266550 A081973 Adjacent sequences:  A153890 A153891 A153892 * A153894 A153895 A153896 KEYWORD nonn,easy AUTHOR Vladimir Joseph Stephan Orlovsky, Jan 03 2009 EXTENSIONS Edited by N. J. A. Sloane, Feb 14 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.