login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055010 a(0) = 0; for n > 0, a(n) = 3*2^(n-1) - 1. 32
0, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Apart from leading term (which should really be 3/2), same as A083329.

Written in binary, a(n) is 1011111...1.

The sequence 2, 5, 11, 23, 47, 95, ... apparently gives values of n such that Nim-factorial(n) = 2. Cf. A059970. However, compare A060152. More work is needed! - John W. Layman, Mar 09 2001

With offset 1, number of (132,3412)-avoiding two-stack sortable permutations.

Number of descents after n+1 iterations of morphism A007413.

a(n) = A164874(n,1), n>0; subsequence of A030130. - Reinhard Zumkeller, Aug 29 2009

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,-1). - Milan Janjic, Jan 24 2010

a(n+1) = A196168(A000079(n)). - Reinhard Zumkeller, Oct 28 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Eric Weisstein's World of Mathematics, Thabit ibn Kurrah Number

E. S. Egge and T. Mansour, 132-avoiding two-stack sortable permutations..., arXiv:math/0205206 [math.CO], 2002.

S. Kitaev and T. Mansour, Counting the occurrences of generalized patterns..., arXiv:math/0210170 [math.CO], 2002.

Index entries for linear recurrences with constant coefficients, signature (3,-2).

FORMULA

a(n) = A118654(n-1, 4), for n > 0.

a(n) = 2*a(n-1) + 1 = a(n-1) + A007283(n-1) = A007283(n)-1 = A000079(n) + A000225(n + 1) = A000079(n + 1) + A000225(n) = 3*A000079(n) - 1 = 3*A000225(n) + 2.

a(n) = A010036(n)/2^(n-1). - Philippe Deléham, Feb 20 2004

a(n) = A099258(A033484(n)-1) = floor(A033484(n)/2). - Reinhard Zumkeller, Oct 09 2004

a(n) = (-1 + 3*2^(n-1))*(1-(C(2*n,n) mod 2)), with n>=0. - Paolo P. Lava, Nov 20 2008

G.f.: x*(2-x)/((1-x)*(1-2*x)). - Philippe Deléham, Oct 04 2011

EXAMPLE

a(3) = 3*2^2 - 1 = 3*4 - 1 = 11.

MATHEMATICA

a=2; lst={0, a}; k=3; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 15 2008 *)

Join[{0}, 3*2^Range[0, 30]-1] (* Harvey P. Dale, May 05 2013 *)

PROG

(MAGMA) [Floor(3*2^(n-1) - 1): n in [0..35]]; // Vincenzo Librandi, May 18 2011

(PARI) a(n)=3*2^n\2 - 1 \\ Charles R Greathouse IV, Apr 08 2016

CROSSREFS

Cf. A007505 for primes in this sequence. Apart from initial term, same as A052940 and A083329.

Cf. A266550 (independence number of the n-Mycielski graph).

Sequence in context: A133489 A060153 A086219 * A153893 A083329 A266550

Adjacent sequences:  A055007 A055008 A055009 * A055011 A055012 A055013

KEYWORD

easy,nonn

AUTHOR

Henry Bottomley, May 31 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 03:00 EST 2016. Contains 279034 sequences.