login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055010 a(0) = 0; for n > 0, 3*2^(n-1) - 1. 27
0, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Apart from leading term (which should really be 3/2), same as A083329.

Written in binary, a(n) is 1011111...1

The sequence 2,5,11,23,47,95,... apparently gives values of n such that Nim-factorial(n) = 2. Cf. A059970. However, compare A060152. More work is needed! - John W. Layman, Mar 09 2001

With offset 1, number of (132,3412)-avoiding two-stack sortable permutations.

Number of descents after n+1 iterations of morphism A007413.

a(n) = A164874(n,1), n>0; subsequence of A030130. [From Reinhard Zumkeller, Aug 29 2009]

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,-1). [From Milan Janjic, Jan 24 2010]

a(n+1) = A196168(A000079(n)). [Reinhard Zumkeller, Oct 28 2011]

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Eric Weisstein's World of Mathematics, Thabit ibn Kurrah Number

E. S. Egge and T. Mansour, 132-avoiding two-stack sortable permutations..., arXiv:math.CO/0205206

S. Kitaev and T. Mansour, Counting the occurrences of generalized patterns..., arXiv:math.CO/0210170

Index to sequences with linear recurrences with constant coefficients, signature (3,-2).

FORMULA

a(n) = 2*a(n-1) + 1 = a(n-1) + A007283(n-1) = A007283(n)-1 = A000079(n) + A000225(n + 1) = A000079(n + 1) + A000225(n) = 3*A000079(n)-1 = 3*A000225(n) + 2.

a(n) = A010036(n)/2^(n-1) . - Philippe Deléham, Feb 20 2004

a(n) = A099258(A033484(n)-1) = floor(A033484(n)/2). - Reinhard Zumkeller, Oct 09 2004

a(n)=[ -1+3*2^(n-1)]*{1-[C(2*n,n) mod 2]}, with n>=0 [From Paolo P. Lava, Nov 20 2008]

G.f.: x*(2-x)/((1-x)*(1-2*x)). [From Philippe Deléham, Oct 04 2011]

EXAMPLE

a(3) = 3*2^2-1 = 3*4-1 = 11

MATHEMATICA

a=2; lst={0, a}; k=3; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 6!}]; lst [From Vladimir Joseph Stephan Orlovsky, Dec 15 2008]

Join[{0}, 3*2^Range[0, 30]-1] (* Harvey P. Dale, May 05 2013 *)

PROG

(MAGMA) [Floor(3*2^(n-1) - 1): n in [0..35]]; // Vincenzo Librandi, May 18 2011

CROSSREFS

Cf. A007505 for primes in this sequence. Apart from initial term, same as A052940 and A083329.

a(n) = A118654(n-1, 4), for n > 0.

Sequence in context: A133489 A060153 A086219 * A083329 A153893 A081973

Adjacent sequences:  A055007 A055008 A055009 * A055011 A055012 A055013

KEYWORD

easy,nonn

AUTHOR

Henry Bottomley, May 31 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 17 08:48 EDT 2014. Contains 240634 sequences.