login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055012 Sum of cubes of the digits of n written in base 10. 51
0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1, 2, 9, 28, 65, 126, 217, 344, 513, 730, 8, 9, 16, 35, 72, 133, 224, 351, 520, 737, 27, 28, 35, 54, 91, 152, 243, 370, 539, 756, 64, 65, 72, 91, 128, 189, 280, 407, 576, 793, 125, 126, 133, 152, 189, 250, 341, 468, 637, 854 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For n > 1999, a(n) < n. The iteration of this map on n either stops at a fixed point (A046197) or has a period of length 2 or 3: {55,250,133}, {136,244}, {160,217,352}, or {919,1459}. - T. D. Noe, Jul 17 2007

A165330 and A165331 give the final value and the number of steps when iterating until a fixed point or cycle is reached. - Reinhard Zumkeller, Sep 17 2009

LINKS

T. D. Noe, Table of n, a(n) for n = 0..11000

K. Iséki, A problem of number theory, Proc. Japan Academy 36 (1960), 578-583. -

B. M. Stewart, Sums of functions of digits, Canad. J. Math., 12 (1960), 374-389.

Index entries for Colombian or self numbers and related sequences

FORMULA

a(n) = sum{k>0, (floor(n/10^k)-10*floor(n/10^(k+1)))^3}. - Hieronymus Fischer, Jun 25 2007

a(10n+k) = a(n)+k^3, 0<=k<10. - Hieronymus Fischer, Jun 25 2007

From Reinhard Zumkeller, Sep 17 2009: (Start)

a(n) <= 729*A055642(n);

a(A165370(n)) = n and a(m) <> n for m < A165370(n);

a(A165332(n)) = A165332(n);

a(a(A165336(n)))=A165336(n) or a(a(a(A165336(n))))=A165336(n). (End)

G.f. g(x) = Sum_{k>=0} (1-x^(10^k))*(x^(10^k)+8*x^(2*10^k)+27*x^(3*10^k)+64*x^(4*10^k)+125*x^(5*10^k)+216*x^(6*10^k)+343*x^(7*10^k)+512*x^(8*10^k)+729*x^(9*10^k))/((1-x)*(1-x^(10^(k+1))

satisfies

g(x) = (x+8*x^2+27*x^3+64*x^4+125*x^5+216*x^6+343*x^7+512*x^8+729*x^9)/(1-x^10) + (1-x^10)*g(x^10)/(1-x). - Robert Israel, Jan 26 2017

MAPLE

A055012 := proc(n)

        add(d^3, d=convert(n, base, 10)) ;

end proc: # R. J. Mathar, Dec 15 2011

MATHEMATICA

Total/@((IntegerDigits/@Range[0, 60])^3) (* Harvey P. Dale, Jan 27 2012 *)

Table[Sum[DigitCount[n][[i]] i^3, {i, 9}], {n, 0, 60}] (* Bruno Berselli, Feb 01 2013 *)

PROG

(MAGMA) [0] cat [&+[d^3: d in Intseq(n)]: n in [1..60]]; // Bruno Berselli, Feb 01 2013

(PARI) A055012(n)=sum(i=1, #n=digits(n), n[i]^3) \\ Charles R Greathouse IV, Jul 01 2013

CROSSREFS

Cf. A003132.

Cf. A046197 Fixed points; A046459: integers equal to the sum of the digits of their cubes; A072884: 3rd order digital invariants: the sum of the cubes of the digits of n equals some number k and the sum of the cubes of the digits of k equals n; A164883: cubes with the property that the sum of the cubes of the digits is also a cube.

Cf. A003132, A007953, A055017, A076313, A076314, A165340.

Sequence in context: A270437 A259603 A254521 * A069939 A118880 A048390

Adjacent sequences:  A055009 A055010 A055011 * A055013 A055014 A055015

KEYWORD

base,nonn,easy,look

AUTHOR

Henry Bottomley, May 31 2000

EXTENSIONS

Edited by M. F. Hasler, Apr 12 2015

Iséki and Stewart links added by Don Knuth, Sep 07 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 11:23 EDT 2019. Contains 323529 sequences. (Running on oeis4.)