login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083329 a(0) = 1; for n > 0, 3*2^(n-1) - 1. 34
1, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Apart from leading term (which should really be 3/2), same as A055010.

Binomial transform of A040001. Inverse binomial transform of A053156.

a(n) = A105728(n+1,2). - Reinhard Zumkeller, Apr 18 2005

Row sums of triangle A133567. - Gary W. Adamson, Sep 16 2007

Row sums of triangle A135226. - Gary W. Adamson, Nov 23 2007

a(n) = number of partitions Pi of [n+1] (in standard increasing form) such that the permutation Flatten[Pi] avoids the patterns 2-1-3 and 3-1-2. Example: a(3)=11 counts all 15 partitions of [4] except 13/24, 13/2/4 which contain a 2-1-3 and 14/23, 14/2/3 which contain a 3-1-2. Here "standard increasing form" means the entries are increasing in each block and the blocks are arranged in increasing order of their first entries. - David Callan, Jul 22 2008

An elephant sequence, see A175654. For the corner squares four A[5] vectors, with decimal values 42, 138, 162, 168, lead to this sequence. For the central square these vectors lead to the companion sequence A003945. - Johannes W. Meijer, Aug 15 2010

The binary representation of a(n) has n+1 digits, where all digits are 1's except digit n-1. For example: a(4) = 23 = 10111 (2). - Omar E. Pol, Dec 02 2012

Row sums of triangle A209561. - Reinhard Zumkeller, Dec 26 2012

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

S. Kitaev, J. Remmel and M. Tiefenbruck, Quadrant marked mesh patterns in 132-avoiding permutations II, arXiv preprint arXiv:1302.2274, 2013

Eric Weisstein's World of Mathematics, Mycielski Graph - Eric W. Weisstein, Nov 24 2008

Index to sequences with linear recurrences with constant coefficients, signature (3,-2).

FORMULA

a(n) = (3*2^n - 2 + 0^n)/2.

G.f.: (1-x+x^2)/((1-x)*(1-2*x)).

E.g.f.: (3*exp(2*x)-2*exp(x)+exp(0))/2.

a(0) = 1, a(n) = sum of all previous terms + n. - Amarnath Murthy, Jun 20 2004

a(n) = 3*a(n-1)-2*a(n-2) for n>2, a(0)=1, a(1)=2, a(2)=5. - Philippe Deléham, Nov 29 2013

From Bob Selcoe, Apr 25 2014: (Start)

a(n) = (...((((((1)+1)*2+1)*2+1)*2+1)*2+1)...), with n+1 1's, n >= 0.

a(n) = 2*a(n-1) + 1, n >= 2.

a(n) = 2^n + 2^(n-1) - 1, n >= 2. (End)

EXAMPLE

a(0) = (3*2^0 - 2 + 0^0)/2 = 2/2 = 1 (use 0^0=1).

MAPLE

seq(ceil((2^i+2^(i+1)-2)/2), i=0..31); # Zerinvary Lajos, Oct 02 2007

MATHEMATICA

a[1] = 2; a[n_] := 2a[n - 1] + 1; Table[ a[n], {n, 31}] (* Robert G. Wilson v, May 04 2004 *)

PROG

(Haskell)

a083329 n = a083329_list !! n

a083329_list = 1 : iterate ((+ 1) . (* 2)) 2

-- Reinhard Zumkeller, Dec 26 2012, Feb 22 2012

CROSSREFS

Essentially the same as A055010 and A052940.

Cf. A000225, A052955, A133567, A135226.

Cf. A007505 (primes).

Sequence in context: A086219 A055010 * A153893 A081973 A055496 A105120

Adjacent sequences:  A083326 A083327 A083328 * A083330 A083331 A083332

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Apr 27 2003

EXTENSIONS

The generating function corrected by Martin Griffiths (griffm(AT)essex.ac.uk), Dec 01 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 21 09:07 EST 2014. Contains 252300 sequences.