This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164874 Triangle read by rows: T(1,1)=2; T(n,k)=2*T(n-1,k)+1, 1<=k
 2, 5, 6, 11, 13, 14, 23, 27, 29, 30, 47, 55, 59, 61, 62, 95, 111, 119, 123, 125, 126, 191, 223, 239, 247, 251, 253, 254, 383, 447, 479, 495, 503, 507, 509, 510, 767, 895, 959, 991, 1007, 1015, 1019, 1021, 1022, 1535, 1791, 1919, 1983, 2015, 2031, 2039, 2043 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS T(n,k) = A030130(n*(n-1)/2 + k + 1); A023416(T(n,k)) = 1, 1<=k<=n; A059673(n) = sum of n-th row; T(n,1) = A055010(n); T(n,2) = A086224(n-2) for n > 1; T(n,n-1) = A036563(n+1) for n > 1; T(n,n) = A000918(n+1). All terms contain exactly 1 zero in binary representation. LINKS Reinhard Zumkeller, Rows n = 1..100 of triangle, flattened FORMULA T(n,k) = 2^(n+1) - 2^(n-k) - 1, 1 <= k <= n. EXAMPLE Initial rows: .  1:                             2 .  2:                        5        6 .  3:                  11        13        14 .  4:             23        27       29        30 .  5:        47        55        59        61        62 .  6:    95       111       119      123       125       126 also in binary representation: .                                10 .                           101       110 .                     1011      1101      1110 .                10111     11011     11101     11110 .          101111    110111    111011    111101    111110 .     1011111   1101111   1110111   1111011   1111101   1111110 . PROG (Haskell) a164874 n k = a164874_tabl !! (n-1) !! (k-1) a164874_row n = a164874_tabl !! (n-1) a164874_tabl = map reverse \$ iterate f [2] where    f xs@(x:_) = (2 * x + 2) : map ((+ 1) . (* 2)) xs -- Reinhard Zumkeller, Mar 31 2015 CROSSREFS Cf. A030130, A023416, A059673, A055010, A086224, A036563, A000918. Sequence in context: A057812 A140144 A030130 * A045845 A002133 A092306 Adjacent sequences:  A164871 A164872 A164873 * A164875 A164876 A164877 KEYWORD nonn,tabl AUTHOR Reinhard Zumkeller, Aug 29 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 21:37 EDT 2019. Contains 328134 sequences. (Running on oeis4.)