login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051597 Rows of triangle formed using Pascal's rule except begin and end n-th row with n+1. 13
1, 2, 2, 3, 4, 3, 4, 7, 7, 4, 5, 11, 14, 11, 5, 6, 16, 25, 25, 16, 6, 7, 22, 41, 50, 41, 22, 7, 8, 29, 63, 91, 91, 63, 29, 8, 9, 37, 92, 154, 182, 154, 92, 37, 9, 10, 46, 129, 246, 336, 336, 246, 129, 46, 10, 11, 56, 175, 375, 582, 672, 582, 375, 175, 56, 11 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row sums give A033484(n).

The number of spotlight tilings of an (m+1) X (n+1) rectangle, read by antidiagonals. - Bridget Tenner, Nov 09 2007

T(n,k) = A134636(n,k) - A051601(n,k). - Reinhard Zumkeller, Nov 23 2012

T(n,k) = A209561(n+2,k+1), 0 <= k <= n. - Reinhard Zumkeller, Dec 26 2012

For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 19 2013

For a closed-form formula for generalized Pascal's triangle see A228576.  - Boris Putievskiy, Sep 09 2013

LINKS

Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened

B. E. Tenner, Spotlight tiling, Ann. Combin. 14 (4) (2010) 553.

Index entries for triangles and arrays related to Pascal's triangle

FORMULA

T(2n,n) = A051924(n+1) . - Philippe Deléham, Nov 26 2006

T(m,n) = binomial(m+n,m) - binomial(m+n-2,m-1). - Bridget Tenner, correct up to offset and transformation of square indices to triangular indices. Nov 09 2007

T(0,n) = T(n,0) = n+1, T(n,k) = T(n-1,k)+T(n-1,k-1), 0<k<n.

From Peter Bala, Feb 28 2013: (Start)

T(n,k) = binomial(n,k-1) + binomial(n,k) + binomial(n,k+1) for 0<=k<=n.

O.g.f.: (1 - xt^2)/((1 - t)(1 - xt)(1 - (1+x)t)) = 1 + (2 + 2x)t + (3 + 4x + 3x^2)t^2 + ....

Row polynomials: ((1+x+x^2)*(1+x)^n - 1 - x^(n+2))/x. (End)

EXAMPLE

1;

2,  2;

3,  4,  3;

4,  7,  7,  4;

5, 11, 14, 11, 5;

MAPLE

T:= proc(n, k) option remember;

      `if`(k<0 or k>n, 0,

      `if`(k=0 or k=n, n+1,

         T(n-1, k-1) + T(n-1, k) ))

    end:

seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, May 27 2013

MATHEMATICA

NestList[Append[ Prepend[Map[Apply[Plus, #] &, Partition[#, 2, 1]], #[[1]] + 1], #[[1]] + 1] &, {1}, 10] // Grid  (* Geoffrey Critzer, May 26 2013 *)

T[n_, k_] := T[n, k] = If[k<0 || k>n, 0, If[k==0 || k==n, n+1, T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *)

PROG

(Haskell)

a051597 n k = a051597_tabl !! n !! k

a051597_row n = a051597_tabl !! n

a051597_tabl = iterate (\row -> zipWith (+) ([1] ++ row) (row ++ [1])) [1]

-- Reinhard Zumkeller, Nov 23 2012

CROSSREFS

Stripped variant of A072405, A122218.

Cf. A007318, A228196, A228576.

Sequence in context: A241356 A065157 A235804 * A084193 A049787 A084192

Adjacent sequences:  A051594 A051595 A051596 * A051598 A051599 A051600

KEYWORD

easy,nonn,tabl

AUTHOR

Asher Auel (asher.auel(AT)reed.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 02:07 EST 2016. Contains 278902 sequences.