login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274628
Nathanson's orphan-counting function h(n).
3
1, 4, 7, 13, 15, 26, 25, 39, 40, 54, 49, 79, 63, 88, 88, 112, 93, 140, 109, 159, 142, 170, 143, 224, 168, 216, 202, 255, 199, 304, 219, 308, 268, 316, 274, 404, 281, 370, 338, 438, 323, 484, 345, 481, 433, 484, 389, 611, 422, 566, 492, 607, 459, 684, 508, 692
OFFSET
1,2
COMMENTS
Number of integer solutions to a*b - c*d = n such that a > c >= 0 and b > d >= 0. - David Radcliffe, Mar 28 2019
LINKS
Brandon Dong, Soren Dupont, and W. Theo Waitkus, Raney Transducers and the Lowest Point of the p-Lagrange spectrum, arXiv:2409.15480 [math.NT], 2024. See p. 25.
Sandie Han, Ariane M. Masuda, Satyanand Singh and Johann Thiel, Orphans in Forests of Linear Fractional Transformations, Electronic Journal of Combinatorics, Vol. 23, No. 3 (2016), Article P3.6. See Fig. 4.
Melvyn B. Nathanson, Pairs of matrices in GL_2(R_{>0}) that freely generate, Amer. Math. Monthly, Vol. 122 No. 8 (2015), pp. 790-792. See Theorem 7.
FORMULA
a(n) = A002133(n) + 2*A000203(n) - A000005(n). - David Radcliffe, Mar 28 2019
G.f.: Sum_{i,j>=1} x^(i*j)/((1-x^i)*(1-x^j)). - Seiichi Manyama, Jan 08 2022
MATHEMATICA
Table[Total[Function[parts, Count[CountDistinct /@ IntegerPartitions[n, All, parts], 2]] /@ Subsets[Range[n], {2}]] + 2 DivisorSigma[1, n] - DivisorSigma[0, n], {n, 1, 100}] (* Eric Rowland, May 26 2018 *)
PROG
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(i=1, N, sum(j=1, N\i, x^(i*j)/((1-x^i)*(1-x^j))))) \\ Seiichi Manyama, Jan 08 2022
(Python)
from sympy import divisor_sigma
def A274628(n): return int(sum(divisor_sigma(j, 0)*divisor_sigma(n-j, 0) for j in range(1, (n-1>>1)+1)) + ((divisor_sigma(n+1>>1, 0)**2 if n-1&1 else 0)-divisor_sigma(n, 0)+3*divisor_sigma(n)>>1)) # Chai Wah Wu, Aug 30 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 07 2016
EXTENSIONS
More terms from Eric Rowland, May 26 2018
STATUS
approved