login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292932
Number of quasitrivial semigroups on an arbitrary n-element set.
8
1, 1, 4, 20, 138, 1182, 12166, 146050, 2003882, 30930734, 530477310, 10007736906, 205965058162, 4592120925862, 110259944144486, 2836517343551714, 77836238876829882, 2269379773783175454, 70057736432648552782, 2282895953541692345722
OFFSET
0,3
COMMENTS
Number of associative and quasitrivial binary operations on {1,...,n}. Convention a(0)=1.
LINKS
Miguel Couceiro, Jimmy Devillet, and Jean-Luc Marichal, Quasitrivial semigroups: characterizations and enumerations, arXiv:1709.09162 [math.RA], 2017.
Jimmy Devillet, Bisymmetric and quasitrivial operations: characterizations and enumerations, arXiv:1712.07856 [math.RA], 2017.
Jimmy Devillet and Miguel Couceiro, Characterizations and enumerations of classes of quasitrivial n-ary semigroups, 98th Workshop on General Algebra (AAA98, Dresden, Germany 2019).
Jimmy Devillet, Jean-Luc Marichal, and Bruno Teheux, Classifications of quasitrivial semigroups, arXiv:1811.11113 [math.RA], 2018.
Amya Luo, Pattern Avoidance in Nonnesting Permutations, Undergraduate Thesis, Dartmouth College (2024). See p. 16.
FORMULA
E.g.f.: 1/(3 + x - 2*exp(x)).
Recurrence: a(0) = 1, a(n+1) = (n+1)*a(n) + 2*Sum_{k=0...n-1} binomial(n+1,k)*a(k).
Explicit form: a(n) = Sum_{i=0...n} Sum_{k=0...n-i} 2^i * (-1)^k * binomial(n,k) * S2(n-k,i) * (i+k)!, where S2(n,k) are the Stirling numbers of the second kind.
a(n) ~ n! / ((r-1) * (r-3)^(n+1)), where r = -LambertW(-1, -2*exp(-3)) = 3.5830738760366909976807989989303134394318270218566... - Vaclav Kotesovec, Sep 27 2017
MATHEMATICA
With[{m=30}, CoefficientList[Series[1/(3+x-2*Exp[x]), {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 21 2019 *)
PROG
(PARI) my(x='x + O('x^30)); Vec(serlaplace(1/(x+3-2*exp(x)))) \\ Michel Marcus, May 21 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/(3+x-2*Exp(x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 21 2019
(Sage) m = 30; T = taylor(1/(3+x-2*exp(x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 21 2019
CROSSREFS
Sequence in context: A129102 A129099 A244756 * A187116 A340903 A098541
KEYWORD
nonn,easy
AUTHOR
Jean-Luc Marichal, Sep 27 2017
STATUS
approved