|
|
A008346
|
|
a(n) = Fibonacci(n) + (-1)^n.
|
|
28
|
|
|
1, 0, 2, 1, 4, 4, 9, 12, 22, 33, 56, 88, 145, 232, 378, 609, 988, 1596, 2585, 4180, 6766, 10945, 17712, 28656, 46369, 75024, 121394, 196417, 317812, 514228, 832041, 1346268, 2178310, 3524577
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Diagonal sums of A059260. - Paul Barry, Oct 25 2004
The absolute value of the Euler characteristic of the Boolean complex of the Coxeter group A_n. - Bridget Tenner, Jun 04 2008
a(n) is the number of compositions (ordered partitions) of n into two sorts of 2's and one sort of 3's. Example: the a(5)=4 compositions of 5 are 2+3, 2'+3, 3+2 and 3+2'. - Bob Selcoe, Jun 21 2013
Let r = 0.70980344286129... denote the rabbit constant A014565. The sequence 2^a(n) gives the simple continued fraction expansion of the constant r/2 = 0.35490172143064565732 ... = 1/(2^1 + 1/(2^0 + 1/(2^2 + 1/(2^1 + 1/(2^4 + 1/(2^4 + 1/(2^9 + 1/(2^12 + ... )))))))). Cf. A099925. - Peter Bala, Nov 06 2013
a(n) is the top left entry of the n-th power of the 3X3 matrix [0, 1, 1; 1, 0, 1; 1, 0, 0] or of the 3X3 matrix [0, 1, 1; 1, 0, 0; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
G. Bilgici, Generalized order-k Pell-Padovan-like numbers by matrix methods, Pure and Applied Mathematics Journal, 2013; 2(6): 174-178.
N. Gogin and A. Mylläri, Padovan-like sequences and Bell polynomials, Proceedings of Applications of Computer Algebra ACA, 2013.
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 445
K. Ragnarsson and B. E. Tenner, Homotopy type of the Boolean complex of a Coxeter system, arXiv:0806.0906 [math.CO], 2008-2009.
Index entries for linear recurrences with constant coefficients, signature (0, 2, 1).
|
|
FORMULA
|
G.f.: 1/(1-2*x^2-x^3).
a(n) = 2a(n-2) + a(n-3).
a(n) = sum{k=0..floor(n/2), sum{j=0..n-k, (-1)^(n-k-j)binomial(j, k)}}. Diagonal sums of A059260. - Paul Barry, Sep 23 2004
a(n) = sum{k=0..floor(n/2), binomial(k, n-2k)2^(3k-n)}; a(n)=sum{k=0..floor(n/2), binomial(k, n-2k)2^k(1/2)^(n-2k)}. - Paul Barry, Oct 04 2004
G.f. : 1/((1+x)(1-x-x^2); a(n)=sum{k=0..n, binomial(n-k-1, k)}. - Paul Barry, Oct 25 2004
a(n) = |1 + (-1)^{n-1}fibonacci(n-1)|. - Bridget Tenner, Jun 04 2008
a(n) = A000045(n) + A033999(n). - Michel Marcus, Nov 14 2013
a(n) = fibonacci(n+1) - a(n-1), with a(0) = 1. - Franklin T. Adams-Watters, Mar 26 2014
a(n) = b(n+1) where b(n) = b(n-1) + b(n-2) + (-1)^(n+1), b(0) = 0, b(1) = 1. See also A098600. - Richard R. Forberg, Aug 30 2014
a(n) = b(n+2) where b(n) = Sum_{k=1..n} b(n-k)*A000931(k+1), b(0) = 1. - J. Conrad, Apr 19 2017
|
|
EXAMPLE
|
The Boolean complex of Coxeter group A_4 is homotopy equivalent to the wedge of 2 spheres S^3, which has Euler characteristic 1 - 2 = -1.
|
|
MAPLE
|
with(combinat): f := n->fibonacci(n)+(-1)^n;
|
|
MATHEMATICA
|
Table[Fibonacci[n]+(-1)^n, {n, 0, 22}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2008 *)
CoefficientList[Series[1 / (1 - 2 x^2 - x^3), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 10 2013 *)
LinearRecurrence[{0, 2, 1}, {1, 0, 2}, 34] (* Ray Chandler, Sep 08 2015 *)
|
|
PROG
|
(MAGMA) [Fibonacci(n) + (-1)^n: n in [0..60]]; // Vincenzo Librandi, Apr 23 2011
(PARI) a(n)=fibonacci(n)+(-1)^n \\ Charles R Greathouse IV, Feb 03 2014
|
|
CROSSREFS
|
Cf. A007492, A066983, A078024, A119282, A014565, A099925, A098600
Sequence in context: A074763 A099932 A175000 * A119282 A241513 A095293
Adjacent sequences: A008343 A008344 A008345 * A008347 A008348 A008349
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
STATUS
|
approved
|
|
|
|