login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A296965 Expansion of x*(1 - x + 2*x^2) / ((1 - x)*(1 - 2*x)). 1
0, 1, 2, 6, 14, 30, 62, 126, 254, 510, 1022, 2046, 4094, 8190, 16382, 32766, 65534, 131070, 262142, 524286, 1048574, 2097150, 4194302, 8388606, 16777214, 33554430, 67108862, 134217726, 268435454, 536870910, 1073741822, 2147483646, 4294967294, 8589934590 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) = A000225(n)-1, a(0)=0, a(1)=1. Number of quasilinear weak orderings R on {1,...,n} that are weakly single-peaked w.r.t. the total ordering 1<...<n and for which {1,...,n} has exactly one maximal element for the quasilinear weak ordering R.

Essentially the same as A095121 and A000918. - R. J. Mathar, Jan 02 2018

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

J. Devillet, Bisymmetric and quasitrivial operations: characterizations and enumerations, arXiv:1712.07856 [math.RA], 2017-2018.

Index entries for linear recurrences with constant coefficients, signature (3,-2).

FORMULA

From Colin Barker, Dec 22 2017: (Start)

G.f.: x*(1 - x + 2*x^2) / ((1 - x)*(1 - 2*x)).

a(n) = 2^n - 2 for n>1.

a(n) = 3*a(n-1) - 2*a(n-2) for n>3.

(End)

a(n) = A134067(n-2) for n >= 3. - Georg Fischer, Oct 30 2018

MATHEMATICA

CoefficientList[Series[x (1 - x + 2 x^2)/((1 - x) (1 - 2 x)), {x, 0, 33}], x] (* or *)

LinearRecurrence[{3, -2}, {0, 1, 2, 6}, 34] (* Michael De Vlieger, Dec 22 2017 *)

PROG

(PARI) concat(0, Vec(x*(1 - x + 2*x^2) / ((1 - x)*(1 - 2*x)) + O(x^40))) \\ Colin Barker, Dec 22 2017

CROSSREFS

Cf. A000225, A000918, A095121, A134067.

Sequence in context: A122958 A122959 A095121 * A000918 A059076 A237623

Adjacent sequences:  A296962 A296963 A296964 * A296966 A296967 A296968

KEYWORD

nonn,easy

AUTHOR

J. Devillet, Dec 22 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 10:48 EDT 2019. Contains 323529 sequences. (Running on oeis4.)