The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007185 Automorphic numbers ending in digit 5: a(n) = 5^(2^n) mod 10^n. (Formerly M3940) 35
 5, 25, 625, 625, 90625, 890625, 2890625, 12890625, 212890625, 8212890625, 18212890625, 918212890625, 9918212890625, 59918212890625, 259918212890625, 6259918212890625, 56259918212890625, 256259918212890625, 2256259918212890625, 92256259918212890625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: For any m coprime to 10 and for any k, the density of n such that a(n) == k (mod m) is 1/m. - Eric M. Schmidt, Aug 01 2012 a(n) is the unique positive integer less than 10^n such that a(n) is divisible by 5^n and a(n) - 1 is divisible by 2^n. - Eric M. Schmidt, Aug 18 2012 REFERENCES V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179. R. A. Fairbairn, More on automorphic numbers, J. Rec. Math., 2 (No. 3, 1969), 170-174. Jan Gullberg, Mathematics, From the Birth of Numbers, W. W. Norton & Co., NY, page 253-4. Ya. I. Perelman, Algebra can be fun, pp. 97-98. C. P. Schut, Idempotents. Report AM-R9101, Centrum voor Wiskunde en Informatica, Amsterdam, 1991. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Eric M. Schmidt, Table of n, a(n) for n = 1..1000 Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6. C. P. Schut, Idempotents, Report AM-R9101, Centre for Mathematics and Computer Science, Amsterdam, 1991. (Annotated scanned copy) Eric Weisstein's World of Mathematics, Automorphic Number Xiaolong Ron Yu, Curious Numbers, Pi Mu Epsilon Journal, Spring 1999, pp. 819-823. FORMULA a(n) = 5^(2^n) mod 10^n. a(n)^2 == a(n) (mod 10^n), that is, a(n) is an idempotent in Z[10^n]. a(n+1) = a(n)^2 mod 10^(n+1). - Eric M. Schmidt, Jul 28 2012 a(2n) = (3*a(n)^2 - 2*a(n)^3) mod 10^(2n). - Sylvie Gaudel, Mar 10 2018 EXAMPLE 625 is in the sequence because 625^2 = 390625, which ends in 625. 90625 is in the sequence because 90625^2 = 8212890625, which ends in 90625. 90635 is not in the sequence because 90635^2 = 8214703225, which does not end in 90635. MAPLE a:= n-> 5&^(2^n) mod 10^n: seq(a(n), n=1..25);  # Alois P. Heinz, Mar 11 2018 MATHEMATICA Table[PowerMod[5, 2^n, 10^n], {n, 25}] (* Vincenzo Librandi, Jun 11 2016 *) PROG (Sage) [crt(1, 0, 2^n, 5^n) for n in range(1, 1001)] # Eric M. Schmidt, Aug 18 2012 (PARI) A007185(n)=lift(Mod(5, 10^n)^2^n)  \\ M. F. Hasler, Dec 05 2012 (MAGMA) [Modexp(5, 2^n, 10^n): n in [1..30]]; // Vincenzo Librandi, Jun 11 2016 CROSSREFS A018247 gives the associated 10-adic number. A003226 = {0, 1} union (this sequence) union A016090. Sequence in context: A082026 A101392 A078260 * A175852 A030995 A067270 Adjacent sequences:  A007182 A007183 A007184 * A007186 A007187 A007188 KEYWORD nonn,base AUTHOR EXTENSIONS More terms from David W. Wilson Edited by David W. Wilson, Sep 26 2002 Further edited by N. J. A. Sloane, Jul 21 2010 Comment moved to name by Alonso del Arte, Mar 10 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 13:08 EST 2021. Contains 349581 sequences. (Running on oeis4.)