The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A018247 The 10-adic integer x = ...8212890625 satisfying x^2 = x. 34
 5, 2, 6, 0, 9, 8, 2, 1, 2, 8, 1, 9, 9, 5, 2, 6, 5, 2, 2, 9, 3, 7, 7, 9, 9, 1, 6, 6, 0, 1, 4, 0, 0, 9, 0, 1, 6, 9, 8, 0, 3, 2, 3, 2, 4, 3, 2, 4, 7, 5, 5, 0, 0, 0, 1, 1, 8, 3, 6, 8, 0, 8, 5, 9, 0, 5, 6, 6, 1, 2, 6, 0, 0, 9, 8, 9, 0, 5, 8, 3, 9, 2, 0, 8, 9, 6, 1, 8, 0, 1, 9, 1, 3, 7, 0, 0, 3, 5, 9, 3, 0, 9, 3, 6, 2, 4, 6, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The 10-adic numbers a and b defined in this sequence and A018248 satisfy a^2=a, b^2=b, a+b=1, ab=0. - Michael Somos REFERENCES W. W. R. Ball, Mathematical Recreations & Essays, N.Y. Macmillan Co, 1947. V. deGuerre and R. A. Fairbairn, Jnl. Rec. Math., No. 3, (1968), 173-179 M. Kraitchik, Sphinx, 1935, p. 1. LINKS Eric M. Schmidt, Table of n, a(n) for n = 0..9999 Anonymous, Automorphic numbers (2) [broken link?] V. deGuerre and R. A. Fairbairn, Automorphic numbers, Jnl. Rec. Math., 1 (No. 3, 1968), 173-179 MathOverflow, Distribution of digits of pq-adic idempotents (aka “automorphic numbers”), 2014. Eric Weisstein's World of Mathematics, Automorphic numbers (1) FORMULA x = 10-adic limit_{n->infty} 5^(2^n) mod 10^(n+1). - Paul D. Hanna, Jul 08 2006 EXAMPLE x = ...0863811000557423423230896109004106619977392256259918212890625. MATHEMATICA a = {5}; f[n_] := Block[{k = 0, c}, While[c = FromDigits[Prepend[a, k]]; Mod[c^2, 10^n] != c, k++ ]; a = Prepend[a, k]]; Do[ f[n], {n, 2, 105}]; Reverse[a] PROG (PARI) a(n)=local(t=5); for(k=1, n+1, t=t^2%10^k); t\10^n \\ Paul D. Hanna, Jul 08 2006 (PARI) Vecrev(digits(lift(chinese(Mod(1, 2^100), Mod(0, 5^100))))) \\ Seiichi Manyama, Aug 07 2019 CROSSREFS A007185 gives associated automorphic numbers. Cf. A018248, A033819, A003226. The difference between A018248 & this sequence is A075693 and their product is A075693. The six examples given by deGuerre and Fairbairn are A055620, A054869, A018247, A018248, A259468, A259469. Sequence in context: A175557 A332455 A217702 * A152025 A021099 A021023 Adjacent sequences:  A018244 A018245 A018246 * A018248 A018249 A018250 KEYWORD base,nonn AUTHOR Yoshihide Tamori (yo(AT)salk.edu) EXTENSIONS More terms from David W. Wilson Edited by David W. Wilson, Sep 26 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 05:52 EST 2020. Contains 338833 sequences. (Running on oeis4.)