This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003182 Dedekind numbers: inequivalent monotone Boolean functions of n or fewer variables, or antichains of subsets of an n-set.
(Formerly M0729)
2, 3, 5, 10, 30, 210, 16353, 490013148 (list; graph; refs; listen; history; text; internal format)



NP-equivalence classes of unate Boolean functions of n or fewer variables.


I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.

Arocha, Jorge Luis (1987) "Antichains in ordered sets" [ In Spanish ]. Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico 27: 1-21.

J. Berman, Free spectra of 3-element algebras, in R. S. Freese and O. C. Garcia, editors, Universal Algebra and Lattice Theory (Puebla, 1982), Lect. Notes Math. Vol. 1004, 1983.

G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.

M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 188.

D. J. Kleitman, On Dedekind's problem: The number of monotone Boolean functions. Proc. Amer. Math. Soc. 21 1969 677-682.

D. J. Kleitman and I. Markowsky, On Dedekind's problem: the number of isotone Boolean functions. II. Trans. Amer. Math. Soc. 213 (1975), 373-390.

D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.

S. Kurz, Competitive learning of monotone Boolean functions, http://www.wm.uni-bayreuth.de/fileadmin/Sascha/Publikationen2/learning_apmod.pdf

W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.

S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 13.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

D. H. Wiedemann, personal communication.


Table of n, a(n) for n=0..7.

K. S. Brown, Dedekind's problem

Patrick De Causmaecker, Stefan De Wannemacker, On the number of antichains of sets in a finite universe, arXiv:1407.4288 [math.CO], 2014

J. L. King, Brick tiling and monotone Boolean functions

S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]

Tamon Stephen and Timothy Yusun, Counting inequivalent monotone Boolean functions, Discrete Applied Mathematics, 167 (2014), 15-24.

Tamon Stephen and Timothy Yusun, Counting inequivalent monotone Boolean functions, arXiv preprint arXiv:1209.4623, 2012

Eric Weisstein's World of Mathematics, Boolean Function.

Index entries for sequences related to Boolean functions


Cf. A000372, A007153, A006602, A007411.

Sequence in context: A259878 A003504 A213169 * A134294 A154956 A197312

Adjacent sequences:  A003179 A003180 A003181 * A003183 A003184 A003185




N. J. A. Sloane.


a(7) added by Timothy Yusun, Sep 27 2012



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 24 20:31 EST 2017. Contains 281247 sequences.