

A003184


Number of selfdual equivalence classes of threshold functions of exactly n+1 variables.
(Formerly M3492)


1




OFFSET

0,5


REFERENCES

H. M. Gurk and J. R. Isbell. 1959. Simple Solutions. In A. W. Tucker and R. D. Luce (eds.) Contributions to the Theory of Games, Volume 4. Princeton, NJ: Princeton University Press, pp. 247265. Case n=6.
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2.  Row 24. (cases n>7).
J. von Neumann and O. Morgenstern, Theory of games and economic behavior, Princeton University Press, New Jersey, 1944. Cases n=1 to 5.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Wang Lan, Table of n, a(n) for n = 0..9
J. R. Isbell, On the enumeration of majority games, MTAC, v.13, 1959, pp. 2128. (case n=7).
S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818825. [Annotated scanned copy]


FORMULA

a(n) = A001532(n+1)  A001532(n), for n>0.  Evgeny Luttsev, Sep 09 2014


CROSSREFS

Sequence in context: A048369 A269590 A113559 * A065062 A240273 A137048
Adjacent sequences: A003181 A003182 A003183 * A003185 A003186 A003187


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane.


EXTENSIONS

a(9) from Evgeny Luttsev, Sep 09 2014


STATUS

approved



