|
| |
|
|
A003184
|
|
Number of self-dual equivalence classes of threshold functions of exactly n+1 variables.
(Formerly M3492)
|
|
1
|
| |
|
|
|
OFFSET
|
0,5
|
|
|
REFERENCES
|
H. M. Gurk and J. R. Isbell. 1959. Simple Solutions. In A. W. Tucker and R. D. Luce (eds.) Contributions to the Theory of Games, Volume 4. Princeton, NJ: Princeton University Press, pp. 247-265. Case n=6.
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 24. (cases n>7).
J. von Neumann and O. Morgenstern, Theory of games and economic behavior, Princeton University Press, New Jersey, 1944. Cases n=1 to 5.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
|
LINKS
|
Wang Lan, Table of n, a(n) for n = 0..9
J. R. Isbell, On the enumeration of majority games, MTAC, v.13, 1959, pp. 21-28. (case n=7).
S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
|
|
|
FORMULA
|
a(n) = A001532(n+1) - A001532(n), for n>0. - Evgeny Luttsev, Sep 09 2014
|
|
|
CROSSREFS
|
Sequence in context: A048369 A269590 A113559 * A065062 A240273 A137048
Adjacent sequences: A003181 A003182 A003183 * A003185 A003186 A003187
|
|
|
KEYWORD
|
nonn,more
|
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
|
EXTENSIONS
|
a(9) from Evgeny Luttsev, Sep 09 2014
|
|
|
STATUS
|
approved
|
| |
|
|