login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003180 Number of equivalence classes of Boolean functions of n variables under action of symmetric group.
(Formerly M1265 N1405)
10
2, 4, 12, 80, 3984, 37333248, 25626412338274304, 67516342973185974328175690087661568, 2871827610052485009904013737758920847669809829897636746529411152822140928 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

A003180(n-1) is the number of equivalence classes of Boolean functions of n variables from Post class F(8,inf) under action of symmetric group.

Also number of nonisomorphic sets of subsets of an n-set.

Also the number of unlabeled hypergraphs on n nodes [Qian]. - N. J. A. Sloane, May 12 2014

In the 1995 Encyclopedia of Integer Sequences this sequence appears twice, as both M1265 and M3458 (one entry began at n=0, the other at n=1).

REFERENCES

M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 147.

D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.

S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 5.

Qian, Jianguo. Enumeration of unlabeled uniform hypergraphs. Discrete Math. 326 (2014), 66--74. MR3188989. See Table 1, p. 71. - N. J. A. Sloane, May 12 2014

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vladeta Jovovic, Table of n, a(n) for n = 0..11

Index entries for sequences related to Boolean functions

FORMULA

a(n) = Sum_{1*s_1+2*s_2+...=n} (fix A[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...)) where fix A[s_1, s_2, ...] = 2^Sum_{i>=1} ( Sum_{d|i} ( mu(i/d)*( 2^Sum_{j>=1} ( gcd(j, d)*s_j))))/i.

MAPLE

with(numtheory):with(combinat):

for n from 1 to 10 do

p:=partition(n): s:=0: for k from 1 to nops(p) do q:=convert(p[k], multiset): for i from 0 to n do a(i):=0: od:

  for i from 1 to nops(q) do a(q[i][1]):=q[i][2]: od:

  c:=1: ord:=1: for i from 1 to n do c:=c*a(i)!*i^a(i):ord:=lcm(ord, i): od: ss:=0:

  for i from 1 to ord do if ord mod i=0 then ss:=ss+phi(ord/i)*2^add(gcd(j, i)*a(j), j=1..n): fi: od:

  s:=s+2^(ss/ord)/c:

od:

printf(`%d `, n):

printf("%d ", s):

od: - Vladeta Jovovic, Sep 19 2006

CROSSREFS

a(n) = 2*A000612(n). Cf. A001146. Row sums of A052265.

Sequence in context: A141522 A114903 A038054 * A002080 A001206 A144295

Adjacent sequences:  A003177 A003178 A003179 * A003181 A003182 A003183

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Vladeta Jovovic

Edited with formula by Christian G. Bower, Jan 08 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 2 22:45 EDT 2014. Contains 246369 sequences.