The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007363 Maximal self-dual antichains on n points. (Formerly M2505) 15
 0, 1, 3, 5, 20, 168, 11748, 12160647 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS From Gus Wiseman, Jul 02 2019: (Start) If self-dual means (pairwise) intersecting, then a(n) is the number of maximal intersecting antichains of nonempty subsets of {1..(n - 1)}. A set of sets is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint. For example, the a(2) = 1 through a(5) = 20 maximal intersecting antichains are:    {1}    {1}     {1}             {1}           {2}     {2}             {2}           {12}    {3}             {3}                   {123}           {4}                   {12}{13}{23}    {1234}                                   {12}{13}{23}                                   {12}{14}{24}                                   {13}{14}{34}                                   {23}{24}{34}                                   {12}{134}{234}                                   {13}{124}{234}                                   {14}{123}{234}                                   {23}{124}{134}                                   {24}{123}{134}                                   {34}{123}{124}                                   {12}{13}{14}{234}                                   {12}{23}{24}{134}                                   {13}{23}{34}{124}                                   {14}{24}{34}{123}                                   {123}{124}{134}{234} (End) REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Daniel E. Loeb, On Games, Voting Schemes and Distributive Lattices. LaBRI Report 625-93, University of Bordeaux I, 1993. [Broken link] FORMULA For n > 0, a(n) = A326363(n - 1) - 1 = A326362(n - 1) + n - 1. - Gus Wiseman, Jul 03 2019 MATHEMATICA stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]]; fasmax[y_]:=Complement[y, Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[stableSets[Subsets[Range[n], {1, n}], Or[Intersection[#1, #2]=={}, SubsetQ[#1, #2]]&]]], {n, 0, 5}] (* Gus Wiseman, Jul 02 2019 *) (* 2nd program *) n = 2^6; g = CompleteGraph[n]; i = 0; While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]]; sets = FindClique[g, Infinity, All]; Length[sets]-1 (* Elijah Beregovsky, May 06 2020 *) CROSSREFS Intersecting antichains are A326372. Intersecting antichains of nonempty sets are A001206. Unlabeled intersecting antichains are A305857. Maximal antichains of nonempty sets are A326359. The case with empty edges allowed is A326363. Cf. A000372, A305844, A306007, A326358, A326361, A326362, A326366. Sequence in context: A171864 A256093 A066902 * A103991 A224994 A321768 Adjacent sequences:  A007360 A007361 A007362 * A007364 A007365 A007366 KEYWORD nonn,more AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 19:08 EDT 2020. Contains 334580 sequences. (Running on oeis4.)