login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060557 Row sums of triangle A060556. 7
1, 3, 10, 33, 108, 352, 1145, 3721, 12087, 39254, 127469, 413908, 1343980, 4363921, 14169633, 46008619, 149389218, 485064009, 1574993356, 5113971944, 16604963593, 53915979657, 175064088671 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Equals the INVERT transform of A045623: (1, 2, 5, 12, 28, ...). - Gary W. Adamson, Oct 26 2010

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..500

Index entries for linear recurrences with constant coefficients, signature (5, -6, 1).

FORMULA

a(n) = Sum_{m=0..n} A060556(n, m).

G.f.: (1-x)^2/(1 - 5*x + 6*x^2 - x^3).

a(n) = 5a(n-1) - 6a(n-2) + a(n-3). - Floor van Lamoen, Nov 02 2005

MATHEMATICA

a[0] = 1; a[1] = 3; a[2] = 10; a[n_] := a[n] = 5*a[n-1] - 6*a[n-2] + a[n-3]; Table[a[n], {n, 0, 22}] (* Jean-Fran├žois Alcover, Jul 05 2013, after Floor van Lamoen *)

LinearRecurrence[{5, -6, 1}, {1, 3, 10}, 30] (* Harvey P. Dale, Nov 29 2013 *)

PROG

(PARI) { f="b060557.txt"; a0=1; a1=3; a2=10; write(f, "0 1"); write(f, "1 3"); write(f, "2 10"); for (n=3, 500, write(f, n, " ", a=5*a2 - 6*a1 + a0); a0=a1; a1=a2; a2=a; ) } \\ Harry J. Smith, Jul 07 2009

CROSSREFS

a(n)=A028495(2n+1).

Cf. A053975.

Cf. A052975 (row sums of triangle A060102).

Cf. A045623. - Gary W. Adamson, Oct 26 2010

Sequence in context: A049219 A126184 A292397 * A018920 A271943 A255116

Adjacent sequences:  A060554 A060555 A060556 * A060558 A060559 A060560

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Apr 06 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 18 07:10 EDT 2019. Contains 325134 sequences. (Running on oeis4.)