login
A060560
Number of ways to color vertices of an octagon using <= n colors, allowing rotations and reflections.
5
0, 1, 30, 498, 4435, 25395, 107331, 365260, 1058058, 2707245, 6278140, 13442286, 26942565, 51084943, 92383305, 160386360, 268718116, 436365945, 689252778, 1062132490, 1600850055, 2365010571, 3431103775, 4896133188, 6881801550
OFFSET
0,3
COMMENTS
In Williamson's terminology, this is "Number of 8-hoops with n symbols."
LINKS
S. G. Williamson, The combinatorial analysis of patterns and the principle of inclusion-exclusion, Discrete Math. 1 (1972), no. 4, 357--388. MR0299493 (45 #8541). - N. J. A. Sloane, Mar 27 2012
FORMULA
a(n) = n*(n+1)*(n^6-n^5+n^4+3*n^3+2*n^2-2*n+4)/16.
G.f.: x*(1+21*x+264*x^2+949*x^3+1014*x^4+258*x^5+13*x^6)/(1-x)^9. [Colin Barker, Jan 29 2012]
PROG
(PARI) { for (n=0, 500, write("b060560.txt", n, " ", (n^8 + 4*n^5 + 5*n^4 + 2*n^2 + 4*n)/16); ) } \\ Harry J. Smith, Jul 07 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 12 2001
STATUS
approved