|
|
A001429
|
|
Number of n-node connected unicyclic graphs.
(Formerly M1438 N0568)
|
|
25
|
|
|
1, 2, 5, 13, 33, 89, 240, 657, 1806, 5026, 13999, 39260, 110381, 311465, 880840, 2497405, 7093751, 20187313, 57537552, 164235501, 469406091, 1343268050, 3848223585, 11035981711, 31679671920, 91021354454, 261741776369, 753265624291, 2169441973139, 6252511838796
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,2
|
|
REFERENCES
|
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 3..500
Washington G. Bomfim, A picture of the twenty one unicycles with 3,4,5 and 6 vertices
Audace A. V. Dossou-Olory, Graphs and unicyclic graphs with extremal connected subgraphs, arXiv:1812.02422 [math.CO], 2018.
R. K. Guy, Letter to N. J. A. Sloane, 1988-04-12 (annotated scanned copy) Includes illustrations for n <= 6.
R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
S. Karim, J. Sawada, Z. Alamgirz and S. M. Husnine, Generating bracelets with fixed content, Theoretical Computer Science, Volume 475, 4 March 2013, Pages 103-112.
Richard J. Mathar, Counting Connected Graphs without Overlapping Cycles, arXiv:1808.06264 [math.CO], 2018.
Marko Riedel et al., Non-isomorphic, connected, unicyclic graphs, Math Stackexchange, November 2018. (Derivation of algorithm and Maple implementation using PET.)
Marko Riedel, Maple implementation using PET.
M. L. Stein and P. R. Stein, Enumeration of Linear Graphs and Connected Linear Graphs up to p = 18 Points, Report LA-3775, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Oct 1967. doi: 10.2172/4180737.
Eric Weisstein's World of Mathematics, Unicyclic Graph
|
|
FORMULA
|
a(n) = A068051(n) - A027852(n) - A000081(n).
|
|
MATHEMATICA
|
Needs["Combinatorica`"];
nn=30; s[n_, k_]:=s[n, k]=a[n+1-k]+If[n<2k, 0, s[n-k, k]]; a[1]=1; a[n_]:=a[n]=Sum[a[i]s[n-1, i]i, {i, 1, n-1}]/(n-1); rt=Table[a[i], {i, 1, nn}]; Apply[Plus, Table[Take[CoefficientList[CycleIndex[DihedralGroup[n], s]/.Table[s[j]->Table[Sum[rt[[i]]x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], nn], {n, 3, nn}]] (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
(* Second program: *)
TreeGf[nn_] := Module[{A}, A = Table[1, {nn}]; For[n = 1, n <= nn 1, n++, A[[n + 1]] = 1/n * Sum[Sum[ d*A[[d]], {d, Divisors[k]}]*A[[n - k + 1]], {k, 1, n}]]; x A.x^Range[0, nn-1]];
seq[n_] := Module[{t, g}, If[n < 3, {}, t = TreeGf[n - 2]; g[e_] := Normal[t + O[x]^(Quotient[n, e]+1)] /. x -> x^e + O[x]^(n+1); Sum[Sum[ EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[k], g[1]* g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2], {k, 3, n}]]/2 // Drop[CoefficientList[#, x], 3]&];
seq[32] (* Jean-François Alcover, Oct 05 2019, after Andrew Howroyd's PARI code *)
|
|
PROG
|
(PARI) \\ TreeGf gives gf of A000081
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={if(n<3, [], my(t=TreeGf(n-2)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2))} \\ Andrew Howroyd, May 05 2018
|
|
CROSSREFS
|
Next-to-main diagonal of A054924. Cf. A000055.
Cf. A236570 (number of not necessarily connected n-node unicyclic graphs).
Sequence in context: A007020 A080888 A052988 * A148288 A320813 A278134
Adjacent sequences: A001426 A001427 A001428 * A001430 A001431 A001432
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from R. C. Read (rcread(AT)math.uwaterloo.ca)
a(27) corrected, more terms, formula from Christian G. Bower, Feb 12 2002
Edited by Charles R Greathouse IV, Oct 05 2009
Terms a(30) and beyond from Andrew Howroyd, May 05 2018
|
|
STATUS
|
approved
|
|
|
|