login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159772
Number of n-leaf binary trees that do not contain (()((((()())())())())) as a subtree.
10
1, 1, 2, 5, 14, 41, 124, 384, 1210, 3865, 12482, 40677, 133572, 441468, 1467296, 4900760, 16439370, 55357305, 187050302, 633998079, 2154950454, 7343407521, 25082709012, 85858848820, 294480653064, 1011871145116, 3482837144984, 12006861566684, 41454180382688
OFFSET
1,3
COMMENTS
By 'binary tree' we mean a rooted, ordered tree in which each vertex has either 0 or 2 children.
a(n) is also the number of Dyck words of semilength n-1 with no DUUUU.
Also, number of ordered rooted trees with n nodes and all non-root nodes having outdegrees < 4. - Andrew Howroyd, Dec 04 2017
LINKS
CombOS - Combinatorial Object Server, Generate binary trees
Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
Petr Gregor, Torsten Mütze, and Namrata, Combinatorial generation via permutation languages. VI. Binary trees, arXiv:2306.08420 [cs.DM], 2023.
Nickolas Hein and Jia Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015.
Eric S. Rowland, Pattern avoidance in binary trees, arXiv:0809.0488 [math.CO], 2008-2010.
FORMULA
G.f. f(x) satisfies (1 - 4 x) f(x)^3 + (6 x - 1) x f(x)^2 - 4 x^3 f(x) + x^4 = 0.
a(n) = sum(k=1..n-1, k*sum(j=0..n-1, binomial(n-1,j)*sum(i=j..n-k+j-1, binomial(j,i-j)*binomial(n-j-1,3*j-n-k-i+1))))/(n-1), n>1. a(0)=0, a(1)=1. - Vladimir Kruchinin, Oct 23 2011
Conjecture: 2*(n-1)*(2*n-3)*a(n) +(-43*n^2+172*n-177)*a(n-1) +4*(44*n^2-266*n+411)*a(n-2) +8*(-43*n^2+358*n-741)*a(n-3) +96*(3*n^2-29*n+69)*a(n-4) -128*(n-4)*(n-6)*a(n-5) +512*(n-6)*(n-7)*a(n-6)=0. - R. J. Mathar, May 30 2014
G.f.: x/(1-x*G(x)) where G(x) is g.f. of A036765. - Andrew Howroyd, Dec 04 2017
From Vaclav Kotesovec, Dec 05 2017: (Start)
Recurrence (of order 4): 2*(n-1)*(2*n - 3)*(13*n^2 - 75*n + 104)*a(n) = 3*(117*n^4 - 1039*n^3 + 3315*n^2 - 4513*n + 2216)*a(n-1) - 12*(39*n^4 - 368*n^3 + 1268*n^2 - 1893*n + 1032)*a(n-2) - 16*(n-4)*(13*n^3 - 75*n^2 + 122*n - 54)*a(n-3) - 64*(n-5)*(n-4)*(13*n^2 - 49*n + 42)*a(n-4).
a(n) ~ sqrt(r*s*(r - s + 2*s^2) / (2*Pi*(r - 6*r^2 - 3*s + 12*r*s))) / (n^(3/2) * r^n), where r = 0.2769531794372340984240353119411920830379502290822... and s = 0.8081460429543529393193017440354060980373344931954... are real roots of the system of equations r^4 + r*(-1 + 6*r)*s^2 + (1 - 4*r)*s^3 = 4*r^3*s, s*(12*r^2 + 3*s - 2*r*(1 + 6*s)) = 4*r^3. (End)
a(n+1) = Sum_{k=0..n} A064580(n,k). - Georg Fischer, Jul 20 2023
MATHEMATICA
terms = 30; col[k_] := Module[{G}, G = InverseSeries[x*(1 - x)/(1 - x^k) + O[x]^terms, x]; CoefficientList[1/(1 - G), x]];
col[4] (* Jean-François Alcover, Dec 05 2017, after Andrew Howroyd *)
PROG
(PARI) Vec(1/(1-serreverse(x*(1-x)/(1-x^4) + O(x*x^25)))) \\ Andrew Howroyd, Dec 04 2017
(Maxima)
a(n):=if n=1 then 1 else sum(k*sum(binomial(n-1, j)*sum(binomial(j, i-j)*binomial(n-j-1, 3*j-n-k-i+1), i, j, n-k+j-1), j, 0, n-1), k, 1, n-1)/(n-1); \\ Vladimir Kruchinin, Oct 23 2011
CROSSREFS
Column k=4 of A295679.
Sequence in context: A108626 A365509 A366046 * A161898 A159770 A159773
KEYWORD
nonn
AUTHOR
Eric Rowland, Apr 23 2009
STATUS
approved