This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295679 Array read by antidiagonals: T(n,k) = k-Modular Catalan numbers C_{n,k} (n >= 0, k > 0). 8
 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 5, 8, 1, 1, 1, 2, 5, 13, 16, 1, 1, 1, 2, 5, 14, 35, 32, 1, 1, 1, 2, 5, 14, 41, 96, 64, 1, 1, 1, 2, 5, 14, 42, 124, 267, 128, 1, 1, 1, 2, 5, 14, 42, 131, 384, 750, 256, 1, 1, 1, 2, 5, 14, 42, 132, 420, 1210, 2123, 512, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Definition: Given a primitive k-th root of unity w, a binary operation a*b=a+wb, and sufficiently general fixed complex numbers x_0, ..., x_n, the k-modular Catalan numbers C_{n,k} enumerate parenthesizations of x_0*x_1*...*x_n that give distinct values. Theorem: C_{n,k} enumerates the following objects: (1) binary trees with n internal nodes avoiding a certain subtree (i.e., comb_k^{+1}), (2) plane trees with n+1 nodes whose non-root nodes have degree less than k, (3) Dyck paths of length 2n avoiding a down-step followed immediately by k consecutive up-steps, (4) partitions with n nonnegative parts bounded by the staircase partition (n-1,n-2,...,1,0) such that each positive number appears fewer than k times, (5) standard 2-by-n Young tableaux whose top row avoids contiguous labels of the form i,j+1,j+2,...,j+k for all i= 0, k > 0): ====================================================== n\k| 1   2    3    4    5    6    7    8    9   10 ---|-------------------------------------------------- 0  | 1   1    1    1    1    1    1    1    1    1 ... 1  | 1   1    1    1    1    1    1    1    1    1 ... 2  | 1   2    2    2    2    2    2    2    2    2 ... 3  | 1   4    5    5    5    5    5    5    5    5 ... 4  | 1   8   13   14   14   14   14   14   14   14 ... 5  | 1  16   35   41   42   42   42   42   42   42 ... 6  | 1  32   96  124  131  132  132  132  132  132 ... 7  | 1  64  267  384  420  428  429  429  429  429 ... 8  | 1 128  750 1210 1375 1420 1429 1430 1430 1430 ... 9  | 1 256 2123 3865 4576 4796 4851 4861 4862 4862 ... ... MATHEMATICA rows = cols = 12; col[k_] := Module[{G}, G = InverseSeries[x*(1-x)/(1-x^k) + O[x]^cols, x]; CoefficientList[1/(1 - G), x]]; A = Array[col, cols]; T[n_, k_] := A[[k, n+1]]; Table[T[n-k+1, k], {n, 0, rows-1}, {k, n+1, 1, -1}] // Flatten (* Jean-François Alcover, Dec 05 2017, adapted from PARI *) PROG (PARI) T(n, k)=polcoeff(1/(1-serreverse(x*(1-x)/(1-x^k) + O(x^max(2, n+1)))), n); for(n=0, 10, for(k=1, 10, print1(T(n, k), ", ")); print); CROSSREFS Columns 3..9 are A005773, A159772, A261588, A261589, A261590, A261591, A261592. Cf. A288942, A000108, A001453. Sequence in context: A134132 A030424 A216656 * A287214 A287216 A145515 Adjacent sequences:  A295676 A295677 A295678 * A295680 A295681 A295682 KEYWORD nonn,tabl AUTHOR Andrew Howroyd, Nov 30 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 21:54 EST 2019. Contains 319282 sequences. (Running on oeis4.)