This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295681 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 0, a(1) = 1, a(2) = 0, a(3) = 2. 1
 0, 1, 0, 2, 3, 4, 6, 11, 18, 28, 45, 74, 120, 193, 312, 506, 819, 1324, 2142, 3467, 5610, 9076, 14685, 23762, 38448, 62209, 100656, 162866, 263523, 426388, 689910, 1116299, 1806210, 2922508, 4728717, 7651226, 12379944, 20031169, 32411112, 52442282, 84853395 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Lim_{n->inf} a(n)/a(n-1) = (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045). LINKS Clark Kimberling, Table of n, a(n) for n = 0..2000 Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, 1) FORMULA a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 0, a(1) = 1, a(2) = 0, a(3) = 2. G.f.: (-x + x^2 - 2 x^3)/(-1 + x + x^3 + x^4). MATHEMATICA LinearRecurrence[{1, 0, 1, 1}, {0, 1, 0, 2}, 100] CROSSREFS Cf. A001622, A000045. Sequence in context: A133951 A166081 A111124 * A117308 A114412 A016038 Adjacent sequences:  A295678 A295679 A295680 * A295682 A295683 A295684 KEYWORD nonn,easy AUTHOR Clark Kimberling, Nov 27 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 13:59 EST 2019. Contains 319271 sequences. (Running on oeis4.)