OFFSET
1,3
COMMENTS
By 'binary tree' we mean a rooted, ordered tree in which each vertex has either 0 or 2 children.
a(n) is also the number of Dyck words of semilength n-1 with no DDUUU.
LINKS
CombOS - Combinatorial Object Server, Generate binary trees
Eric S. Rowland, Pattern avoidance in binary trees, arXiv:0809.0488 [math.CO], 2008-2010.
Jean-Luc Baril, Daniela Colmenares, José L. Ramírez, Emmanuel D. Silva, Lina M. Simbaqueba, and Diana A. Toquica, Consecutive pattern-avoidance in Catalan words according to the last symbol, Univ. Bourgogne (France 2023).
Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions, arXiv:1310.8635 [math.NT], 2013.
FORMULA
G.f. f(x) satisfies (x-2) x f(x)^2 + (2 x^2 - 2 x + 1) f(x) + (x-1) x = 0.
Conjecture: 2*(n+1)*a(n) +3*(-3*n+1)*a(n-1) +2*(2*n-1)*a(n-2) +4*(2*n-7)*a(n-3) +2*(-2*n+7)*a(n-4)=0. - R. J. Mathar, May 30 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric Rowland, Apr 23 2009
STATUS
approved