login
A185132
Number of 4-Motzkin paths of length n with no level steps at height 0.
1
1, 0, 1, 4, 18, 84, 405, 2004, 10126, 52048, 271338, 1431400, 7627348, 40994652, 221984157, 1209902388, 6632482710, 36544255968, 202275553662, 1124212840440, 6271377279804, 35102535960360, 197081848211394, 1109621661515016, 6263608341803916
OFFSET
1,4
LINKS
Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.2.
FORMULA
G.f. (for offset 0): (1+4x-sqrt(1-8x+12x^2))/(2x^2+8x).
G.f. as continued fraction is 1/(1-0*x-x^2/(1-4*x-x^2/(1-4*x-x^2/(1-4*x-x^2/(.....
a(s) = Sum_{n=1..s}( Sum_{k=0..floor((s-2*n)/2)} 4^(s-2*n-2*k)*(n/(n+2*k))*binomial(n+2*k, k)*binomial(s-n-1, s-2*n-2*k) ) with s>=2.
D-finite with recurrence: 4*n*a(n) +(48-31n)*a(n-1) +4*(10n-33)*a(n-2) +12*(n-3)*a(n-3)=0. - R. J. Mathar, Jan 27 2012
a(n) ~ 3 * 6^(n-1/2) / (25*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jan 31 2014
a(n) = 1/(n+1)*Sum_{j=0..floor(n/2)} 4^(n-2*j)*C(n+1,j)*C(n-j-1,n-2*j). - Vladimir Kruchinin, Apr 04 2019
MAPLE
with(LREtools): with(FormalPowerSeries): # requires Maple 2022
ogf:= (1+4*x-sqrt(1-8*x+12*x^2))/(2*x^2+8*x):
init:= [1, 0, 1, 4, 18, 84, 405, 2004];
iseq:= seq(u(i-1)=init[i], i=1..nops(init)): req:= FindRE(ogf, x, u(n));
rmin:= subs(n=n-4, MinimalRecurrence(req, u(n), {iseq})[1]); # Mathar's recurrence
a:= gfun:-rectoproc({rmin, iseq}, u(n), remember):
seq(a(n), n=0..24); # Georg Fischer, Nov 03 2022
MATHEMATICA
CoefficientList[Series[(1+4*x-Sqrt[1-8*x+12*x^2])/(2*x^2+8*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 31 2014 *)
PROG
(PARI) x='x+O('x^50); Vec((1+4*x-sqrt(1-8*x+12*x^2))/(2*x^2+8*x)) \\ G. C. Greubel, Jun 23 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved