The OEIS is supported by the many generous donors to the OEIS Foundation.



Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002026 Generalized ballot numbers (first differences of Motzkin numbers).
(Formerly M1416 N0554)
0, 1, 2, 5, 12, 30, 76, 196, 512, 1353, 3610, 9713, 26324, 71799, 196938, 542895, 1503312, 4179603, 11662902, 32652735, 91695540, 258215664, 728997192, 2062967382, 5850674704, 16626415975, 47337954326, 135015505407, 385719506620, 1103642686382, 3162376205180, 9073807670316, 26068895429376 (list; graph; refs; listen; history; text; internal format)



Number of ordered trees with n+1 edges, having root of degree 2 and nonroot nodes of outdegree at most 2.

Sequence without the initial 0 is the convolution of the sequence of Motzkin numbers (A001006) with itself.

Number of horizontal steps at level zero in all Motzkin paths of length n. Example: a(3)=5 because in the four Motzkin paths of length 3, (HHH), (H)UD, UD(H) and UHD, where H=(1,0), U=(1,1), D=(1,-1), we have altogether five horizontal steps H at level zero (shown in parentheses).

Number of peaks at level 1 in all Motzkin paths of length n+1. Example: a(3)=5 because in the nine Motzkin paths of length 4, HHHH, HH(UD), H(UD)H, HUHD, (UD)HH, (UD)(UD), UHDH, UHHD and UUDD (where H=(1,0), U=(1,1), D=(1,-1)), we have five peaks at level 1 (shown between parentheses).

a(n) = number of Motzkin paths of length n+1 that start with an up step. - David Callan, Jul 19 2004

Could be called a Motzkin transform of A130716 because the g.f. is obtained from the g.f. x*A130716(x)= x(1+x+x^2) (offset changed to 1) by the substitution x -> x*A001006(x) of the independent variable. - R. J. Mathar, Nov 08 2008

For n >= 1, a(n) is the number of length n permutations sorted to the identity by a consecutive-123-avoiding stack followed by a classical-21-avoiding stack. - Kai Zheng, Aug 28 2020


Guttmann A J and Jensen I 2022 Self-avoiding walks and polygons crossing a domain on the square and hexagonal lattices Journal of Physics A: Mathematical and Theoretical 55 012345, (33pp) ; arXiv:2208.06744, Aug 2022.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


T. D. Noe, Table of n, a(n) for n = 0..500

Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Motzkin paths with a restricted first return decomposition, Integers (2019) Vol. 19, A46.

L. Carlitz, Solution of certain recurrences, SIAM J. Appl. Math., 17 (1969), 251-259.

J. B. Cosgrave, The Gauss-Factorial Motzkin connection (Maple worksheet, change suffix to .mw)

R. De Castro, A. L. Ramírez and J. L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv preprint arXiv:1310.2449 [hep-ph], 2013.

Colin Defant and Kai Zheng, Stack-Sorting with Consecutive-Pattern-Avoiding Stacks, arXiv:2008.12297 [math.CO], 2020.

Wun-Seng Chou, Tian-Xiao He, and Peter J.-S. Shiue, On the Primality of the Generalized Fuss-Catalan Numbers, Journal of Integer Sequences, Vol. 21 (2018), Article 18.2.1.

C. Defant and K. Zheng, Stack-Sorting with Consecutive-Pattern-Avoiding Stacks, arXiv:2008.12297 [math.CO], 2020.

R. Donaghey and L. W. Shapiro, Motzkin numbers, J. Combin. Theory, Series A, 23 (1977), 291-301.

Gennady Eremin, Arithmetic on Balanced Parentheses: The case of Ordered Motzkin Words, arXiv:1911.01673 [math.CO], 2019. See p. 2.

Gennady Eremin, Generating function for Naturalized Series: The case of Ordered Motzkin Words, arXiv:2002.08067 [math.CO], 2020.

Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.

Nickolas Hein and Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.

J. A. Sharp and N. J. A. Sloane, Correspondence, 1977


a(n) = A001006(n+1) - A001006(n).

a(n) = Sum_{b = 1..(n+1)/2) C(n, 2b-1)*C(2b, b)/(b+1).

Number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer, s(0) = 0 = s(n), s(1) = 1, |s(i) - s(i-1)| <= 1 for i >= 2, Also T(n, n), where T is the array defined in A026105.

a(n) = Sum_{k=0..n-1} Sum_{i=0..k} C(k, 2i)*A000108(i+1). - Paul Barry, Jul 18 2003

G.f.: 4*z/(1-z+sqrt(1-2*z-3*z^2))^2. - Emeric Deutsch, Dec 27 2003

a(n) = A005043(n+2) - A005043(n). - Paul Barry, Apr 17 2005

D-finite with recurrence: (n+3)*a(n) +(-3*n-4)*a(n-1) +(-n-1)*a(n-2) +3*(n-2)*a(n-3)=0. - R. J. Mathar, Dec 03 2012

a(n) ~ 3^(n+3/2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 01 2014

G.f.: A(z) satisfies z*A(z) = (1-z)*M(z) - 1, where M(z) is the g.f. of A001006. - Gennady Eremin, Feb 09 2021

a(0) = 0, a(1) = 1; a(n) = 2 * a(n-1) + a(n-2) + Sum_{k=0..n-3} a(k) * a(n-k-3). - Ilya Gutkovskiy, Nov 09 2021


CoefficientList[Series[4x/(1-x+Sqrt[1-2x-3x^2])^2, {x, 0, 30}], x] (* Harvey P. Dale, Jul 18 2011 *)

a[n_] := n*Hypergeometric2F1[(1-n)/2, 1-n/2, 3, 4]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Aug 13 2012 *)


(PARI) my(z='z+O('z^66)); concat(0, Vec(4*z/(1-z+sqrt(1-2*z-3*z^2))^2)) \\ Joerg Arndt, Mar 08 2016


Cf. A001006, A026300, A026107, row sums of A348840 and of A348869.

A diagonal of triangle A020474.

See A244884 for a variant.

Sequence in context: A038508 A105695 A244884 * A026938 A086622 A253831

Adjacent sequences: A002023 A002024 A002025 * A002027 A002028 A002029




N. J. A. Sloane


Additional comments from Emeric Deutsch, Dec 27 2003



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 17:49 EST 2022. Contains 358535 sequences. (Running on oeis4.)