

A002026


Generalized ballot numbers (first differences of Motzkin numbers).
(Formerly M1416 N0554)


33



0, 1, 2, 5, 12, 30, 76, 196, 512, 1353, 3610, 9713, 26324, 71799, 196938, 542895, 1503312, 4179603, 11662902, 32652735, 91695540, 258215664, 728997192, 2062967382, 5850674704, 16626415975, 47337954326, 135015505407, 385719506620, 1103642686382, 3162376205180, 9073807670316, 26068895429376
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Number of ordered trees with n+1 edges, having root of degree 2 and nonroot nodes of outdegree at most 2.
Sequence without the initial 0 is the convolution of the sequence of Motzkin numbers (A001006) with itself.
Number of horizontal steps at level zero in all Motzkin paths of length n. Example: a(3)=5 because in the four Motzkin paths of length 3, (HHH), (H)UD, UD(H) and UHD, where H=(1,0), U=(1,1), D=(1,1), we have altogether five horizontal steps H at level zero (shown in parentheses).
Number of peaks at level 1 in all Motzkin paths of length n+1. Example: a(3)=5 because in the nine Motzkin paths of length 4, HHHH, HH(UD), H(UD)H, HUHD, (UD)HH, (UD)(UD), UHDH, UHHD and UUDD (where H=(1,0), U=(1,1), D=(1,1)), we have five peaks at level 1 (shown between parentheses).
a(n) = number of Motzkin paths of length n+1 that start with an up step.  David Callan, Jul 19 2004
Could be called a Motzkin transform of A130716 because the g.f. is obtained from the g.f. x*A130716(x)= x(1+x+x^2) (offset changed to 1) by the substitution x > x*A001006(x) of the independent variable.  R. J. Mathar, Nov 08 2008
For n >= 1, a(n) is the number of length n permutations sorted to the identity by a consecutive123avoiding stack followed by a classical21avoiding stack.  Kai Zheng, Aug 28 2020


REFERENCES

Guttmann A J and Jensen I 2022 Selfavoiding walks and polygons crossing a domain on the square and hexagonal lattices Journal of Physics A: Mathematical and Theoretical 55 012345, (33pp) ; arXiv:2208.06744, Aug 2022.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

T. D. Noe, Table of n, a(n) for n = 0..500
JeanLuc Baril, Sergey Kirgizov, and Armen Petrossian, Motzkin paths with a restricted first return decomposition, Integers (2019) Vol. 19, A46.
L. Carlitz, Solution of certain recurrences, SIAM J. Appl. Math., 17 (1969), 251259.
J. B. Cosgrave, The GaussFactorial Motzkin connection (Maple worksheet, change suffix to .mw)
R. De Castro, A. L. Ramírez and J. L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv preprint arXiv:1310.2449 [hepph], 2013.
Colin Defant and Kai Zheng, StackSorting with ConsecutivePatternAvoiding Stacks, arXiv:2008.12297 [math.CO], 2020.
WunSeng Chou, TianXiao He, and Peter J.S. Shiue, On the Primality of the Generalized FussCatalan Numbers, Journal of Integer Sequences, Vol. 21 (2018), Article 18.2.1.
C. Defant and K. Zheng, StackSorting with ConsecutivePatternAvoiding Stacks, arXiv:2008.12297 [math.CO], 2020.
R. Donaghey and L. W. Shapiro, Motzkin numbers, J. Combin. Theory, Series A, 23 (1977), 291301.
Gennady Eremin, Arithmetic on Balanced Parentheses: The case of Ordered Motzkin Words, arXiv:1911.01673 [math.CO], 2019. See p. 2.
Gennady Eremin, Generating function for Naturalized Series: The case of Ordered Motzkin Words, arXiv:2002.08067 [math.CO], 2020.
Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2Binary trees: bijections and related issues, Discr. Math., 308 (2008), 12091221.
Nickolas Hein and Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
J. A. Sharp and N. J. A. Sloane, Correspondence, 1977


FORMULA

a(n) = A001006(n+1)  A001006(n).
a(n) = Sum_{b = 1..(n+1)/2) C(n, 2b1)*C(2b, b)/(b+1).
Number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer, s(0) = 0 = s(n), s(1) = 1, s(i)  s(i1) <= 1 for i >= 2, Also T(n, n), where T is the array defined in A026105.
a(n) = Sum_{k=0..n1} Sum_{i=0..k} C(k, 2i)*A000108(i+1).  Paul Barry, Jul 18 2003
G.f.: 4*z/(1z+sqrt(12*z3*z^2))^2.  Emeric Deutsch, Dec 27 2003
a(n) = A005043(n+2)  A005043(n).  Paul Barry, Apr 17 2005
Dfinite with recurrence: (n+3)*a(n) +(3*n4)*a(n1) +(n1)*a(n2) +3*(n2)*a(n3)=0.  R. J. Mathar, Dec 03 2012
a(n) ~ 3^(n+3/2) / (sqrt(Pi)*n^(3/2)).  Vaclav Kotesovec, Feb 01 2014
G.f.: A(z) satisfies z*A(z) = (1z)*M(z)  1, where M(z) is the g.f. of A001006.  Gennady Eremin, Feb 09 2021
a(0) = 0, a(1) = 1; a(n) = 2 * a(n1) + a(n2) + Sum_{k=0..n3} a(k) * a(nk3).  Ilya Gutkovskiy, Nov 09 2021


MATHEMATICA

CoefficientList[Series[4x/(1x+Sqrt[12x3x^2])^2, {x, 0, 30}], x] (* Harvey P. Dale, Jul 18 2011 *)
a[n_] := n*Hypergeometric2F1[(1n)/2, 1n/2, 3, 4]; Table[a[n], {n, 0, 26}] (* JeanFrançois Alcover, Aug 13 2012 *)


PROG

(PARI) my(z='z+O('z^66)); concat(0, Vec(4*z/(1z+sqrt(12*z3*z^2))^2)) \\ Joerg Arndt, Mar 08 2016


CROSSREFS

Cf. A001006, A026300, A026107, row sums of A348840 and of A348869.
A diagonal of triangle A020474.
See A244884 for a variant.
Sequence in context: A038508 A105695 A244884 * A026938 A086622 A253831
Adjacent sequences: A002023 A002024 A002025 * A002027 A002028 A002029


KEYWORD

nonn,easy,nice,changed


AUTHOR

N. J. A. Sloane


EXTENSIONS

Additional comments from Emeric Deutsch, Dec 27 2003


STATUS

approved



