This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046698 a(0) = 0, a(1) = 1, a(n) = a(a(n-1)) + a(a(n-2)) if n > 1. 17
 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Partial sums are A004275. Binomial transform is A048492, starting with 0. - Paul Barry, Feb 28 2003 REFERENCES Sequence proposed by Reg Allenby. O. Deveci, Y. Akuzum, E. Karaduman, O. Erdag, The Cyclic Groups via Bezout Matrices, Journal of Mathematics Research, Vol. 7, No. 2, 2015, pp. 34-41. LINKS Eric Weisstein's World of Mathematics, Fibonacci n-Step Number FORMULA G.f.: x*(1+x^2)/(1-x). - Paul Barry, Feb 28 2003 a(n) = 2*((n+2) mod (n+1))-(C(n^2,n+2) mod 2)-(C((n+1)^2,n+3) mod 2). - Paolo P. Lava, Sep 03 2007 MAPLE P:=proc(n) local a, i; for i from 0 by 1 to n do a:=2*((i+2) mod (i+1))-(binomial((i)^2, i+2) mod 2)-(binomial((i+1)^2, i+3) mod 2); print(a); od; end: P(100); # Paolo P. Lava, Sep 03 2007 PROG (PARI) a(n)=(n>0)+(n>2) CROSSREFS Sequence in context: A065685 A084100 A130130 * A007395 A036453 A040000 Adjacent sequences:  A046695 A046696 A046697 * A046699 A046700 A046701 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 13:58 EDT 2019. Contains 328161 sequences. (Running on oeis4.)