login
A101465
Decimal expansion of 2-sqrt(2), square of the edge length of a regular octagon with circumradius 1.
7
5, 8, 5, 7, 8, 6, 4, 3, 7, 6, 2, 6, 9, 0, 4, 9, 5, 1, 1, 9, 8, 3, 1, 1, 2, 7, 5, 7, 9, 0, 3, 0, 1, 9, 2, 1, 4, 3, 0, 3, 2, 8, 1, 2, 4, 6, 2, 3, 0, 5, 1, 9, 2, 6, 8, 2, 3, 3, 2, 0, 2, 6, 2, 0, 0, 9, 2, 6, 7, 5, 2, 1, 5, 3, 7, 8, 9, 2, 9, 6, 1, 1, 4, 9, 6, 1, 2, 4, 6, 5, 6, 7, 2, 3, 5, 8, 4, 2, 7, 2, 6, 4, 9, 8, 6
OFFSET
0,1
COMMENTS
This also equals the probability, for a random walk on the slit plane starting at (1,0), of stopping at the origin.
This is the least real number m such that m*(sqrt(ab) + sqrt(bc) + sqrt(ca)) + sqrt(a^2+b^2+c^2) >= a+b+c where a,b,c are positive real numbers with ab+bc+ca > 0. See the Mathematical Reflections link.
The asymptotical ratio of odd to even powerful numbers (Srichan, 2020). - Amiram Eldar, Mar 07 2021
The volume of the solid formed by the intersection of 3 right circular unit-diameter cylinders whose axes are mutually orthogonal and intersect at a single point (Moore, 1974). - Amiram Eldar, Nov 22 2021
LINKS
Mireille Bousquet-Mélou and Gilles Schaeffer, Walks on the slit plane, Probability Theory and Related Fields, Vol. 124, No. 3 (2002), pp. 305-344; arXiv preprint, arXiv:0012230 [math.CO], 2000.
Mathematical Reflections, Solution to Problem J307, Issue 5, 2014, p. 21.
Moreton Moore, Symmetrical Intersections of Right Circular Cylinders, The Mathematical Gazette, Vol. 58, No. 405 (1974), pp. 181-185.
Teerapat Srichan, The Odd/Even Dichotomy For The Set Of Square-Full Numbers, Applied Mathematics E-Notes, Vol. 20 (2020), pp. 528-531.
Eric Weisstein's World of Mathematics, Octagon.
EXAMPLE
0.585786437626904951198311275790301921430328124623051926823320262...
MATHEMATICA
RealDigits[2 - Sqrt[2], 10, 100][[1]] (* G. C. Greubel, Oct 01 2018 *)
PROG
(PARI) 2 - sqrt(2) \\ Michel Marcus, Jan 07 2017
(Magma) SetDefaultRealField(RealField(100)); 2 - Sqrt(2); // G. C. Greubel, Oct 01 2018
CROSSREFS
Cf. A001694, A002193 (sqrt(2)).
Sequence in context: A371945 A358630 A100610 * A010719 A246903 A213022
KEYWORD
cons,nonn
AUTHOR
Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jan 20 2005
STATUS
approved