login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048492 a(n) = ( 8*(2^n) - n^2 - 3*n - 6 )/2. 4
1, 3, 8, 20, 47, 105, 226, 474, 977, 1991, 4028, 8112, 16291, 32661, 65414, 130934, 261989, 524115, 1048384, 2096940, 4194071, 8388353, 16776938, 33554130, 67108537, 134217375, 268435076, 536870504, 1073741387, 2147483181 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Partial sums of A000325, starting at n=1. - Klaus Brockhaus, Oct 13 2008

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5,-9,7,-2).

FORMULA

a(0) = 1; a(n) = a(n-1) + 2^(n+1) - (n+1) for n > 0. - Klaus Brockhaus, Oct 13 2008

From Colin Barker, Oct 27 2014: (Start)

a(n) = (-2+2^(2+n)-1/2*(1+n)*(2+n)).

a(n) = 5*a(n-1)-9*a(n-2)+7*a(n-3)-2*a(n-4).

G.f.: (2*x^2-2*x+1) / ((x-1)^3*(2*x-1)).

(End)

MATHEMATICA

lst={}; s=0; Do[s+=2^n-n; AppendTo[lst, s], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 30 2008 *)

Table[(8*2^n-n^2-3n-6)/2, {n, 0, 30}]

LinearRecurrence[{5, -9, 7, -2}, {1, 3, 8, 20}, 40] (* Harvey P. Dale, Aug 28 2019 *)

PROG

(ARIBAS) a:=0; for n:=1 to 30 do a:=a+2**n-n; write(a, ", "); end; # Klaus Brockhaus, Oct 13 2008

(MAGMA) [( 8*(2^n) -n^2 -3*n -6 )/2: n in [0..30]]; // Vincenzo Librandi, Sep 23 2011

(PARI) Vec((2*x^2-2*x+1) / ((x-1)^3*(2*x-1)) + O(x^100)) \\ Colin Barker, Oct 27 2014

CROSSREFS

a(n)=T(0, n)+T(1, n-1)+...+T(n, 0), array T given by A048483.

Cf. A000325 (2^n - n), A145070. - Klaus Brockhaus, Oct 13 2008

Sequence in context: A036676 A101533 A138803 * A006776 A291097 A293883

Adjacent sequences:  A048489 A048490 A048491 * A048493 A048494 A048495

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

EXTENSIONS

Better description from Frank Ellermann, Mar 16 2002

Corrected by T. D. Noe, Nov 08 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 16:37 EST 2019. Contains 329323 sequences. (Running on oeis4.)