login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033845 Numbers n of the form 2^i*3^j, i and j >= 1. 53
6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, 288, 324, 384, 432, 486, 576, 648, 768, 864, 972, 1152, 1296, 1458, 1536, 1728, 1944, 2304, 2592, 2916, 3072, 3456, 3888, 4374, 4608, 5184, 5832, 6144, 6912, 7776, 8748, 9216, 10368, 11664 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Solutions to phi(n)=n/3 [See J-M. de Koninck & A. Mercier, problème 733].

Numbers n such that Sum_{d prime divisor of n} 1/d = 5/6. - Benoit Cloitre, Apr 13 2002

Also n such that Sum_{d|n} mu(d)^2/d = 2. - Benoit Cloitre, Apr 15 2002

Complement of A006899 with respect to A003586. - Reinhard Zumkeller, Sep 25 2008

In the sieve of Eratosthenes, if one crosses numbers off multiple times, these numbers are crossed off twice, first for 2 and then for 3. - Alonso del Arte, Aug 22 2011

Subsequence of A051037. - Reinhard Zumkeller, Sep 13 2011

Numbers n such that Sum_{d|n} A008683(d)*A000041(d) = 7. - Carl Najafi, Oct 19 2011

Numbers n such that Sum_{d|n} A008683(d)*A000700(d) = 2. - Carl Najafi, Oct 20 2011

Solutions to the equation A001615(x) = 2x. - Enrique Pérez Herrero, Jan 02 2012

So these numbers are called Psi-perfect numbers [see J-M. de Koninck & A. Mercier, problème 654]. - Bernard Schott, Nov 20 2020

REFERENCES

J-M. de Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, 2004, Problème 733, page 94.

J-M. de Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, 2004, Problème 654, page 85.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

FORMULA

Six times the 3-smooth numbers (A003586). - Ralf Stephan, Apr 16 2004

A086411(a(n)) - A086410(a(n)) = 1. - Reinhard Zumkeller, Sep 25 2008

A143201(a(n)) = 2. - Reinhard Zumkeller, Sep 13 2011

a(n) = 2^A191475(n) * 3^A191476(n). - Zak Seidov, Nov 01 2013

Sum_{n>=1} 1/a(n) = 1/2. - Amiram Eldar, Oct 13 2020

MATHEMATICA

mx = 12000; Sort@ Flatten@ Table[2^i*3^j, {i, Log[2, mx]}, {j, Log[3, mx/2^i]}] (* Robert G. Wilson v, Aug 17 2012 *)

PROG

(Haskell)

import Data.Set (singleton, deleteFindMin, insert)

a033845 n = a033845_list !! (n-1)

a033845_list = f (singleton (2*3)) where

   f s = m : f (insert (2*m) $ insert (3*m) s') where

     (m, s') = deleteFindMin s

-- Reinhard Zumkeller, Sep 13 2011

(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim\2)\log(3), N=6*3^n; while(N<=lim, listput(v, N); N<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 02 2012

CROSSREFS

Subsequence of A000423, A003586, A051037, A256617.

Cf. A001615, A006899, A086410, A086411, A008683, A143201.

Cf. A191475, A191476.

Sequence in context: A244193 A329878 A215142 * A187778 A120942 A147306

Adjacent sequences:  A033842 A033843 A033844 * A033846 A033847 A033848

KEYWORD

nonn,easy,changed

AUTHOR

Jeff Burch

EXTENSIONS

Minor edits by N. J. A. Sloane, Jan 31 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 01:48 EST 2020. Contains 338864 sequences. (Running on oeis4.)