This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064613 Generalized binomial transform of Catalan numbers. 16
 1, 3, 10, 37, 150, 654, 3012, 14445, 71398, 361114, 1859628, 9716194, 51373180, 274352316, 1477635912, 8016865533, 43773564294, 240356635170, 1326359740956, 7351846397334, 40913414754324, 228508350629892 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Second binomial transform of Catalan numbers. Exponential convolution of Catalan numbers and powers of 2. - Vladeta Jovovic, Dec 03 2004 Hankel transform of this sequence gives A000012 = [1,1,1,1,1,...]. - Philippe Deléham, Oct 24 2007 a(n) is the number of Motzkin paths of length n in which the (1,0)-steps at level 0 come in 3 colors and those at a higher level come in 4 colors. Example: a(3)=37 because, denoting  U=(1,1), H=(1,0), and D=(1,-1), we have 3^3 = 27 paths of shape HHH, 3 paths of shape HUD, 3 paths of shape UDH, and 4 paths of shape UHD. - Emeric Deutsch, May 02 2011 a(n) is the number of Schroeder paths of semilength n in which the (2,0)-steps come in 2 colors and having no (2,0)-steps at levels 1,3,5,... - José Luis Ramírez Ramírez, Mar 30 2013 From Tom Copeland, Nov 08 2014: (Start) This array is one of a family of Catalan arrays related by compositions of the special fractional linear (Möbius) transformations P(x,t)=x/(1-t*x); its inverse Pinv(x,t) = P(x,-t); and an o.g.f. of the Catalan numbers A000108, C(x) = [1-sqrt(1-4x)]/2; and its inverse Cinv(x) = x*(1-x). (Cf A126930.) O.g.f.: G(x) = C[P[P(x,-1),-1]] = C[P(x,-2)] = [1-sqrt(1-4*x/(1-2x)]/2 = x*A064613(x). Ginv(x) =  Pinv[Cinv(x),-2] = P[Cinv(x),2] = x(1-x)/[1+2x(1-x)] = (x-x^2)/[1+2(x-x^2)] = x - 3 x^2 + 8 x^3 - ... is -A155020(-x) ignoring first term there. (Cf. A146559, A125145.)(End) LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv:1110.6638 [math.NT], 2011. FORMULA In Maple notation: a(n)=sum(binomial(n, k)*binomial(2*k, k)*2^(n-k)/(k+1), k = 0 .. n) = 2^n*hypergeom([1/2, -n], , -2), n=0, 1, ... G.f.: (1-sqrt((1-6*x)/(1-2*x)))/2/x. - Vladeta Jovovic, May 03 2003 With offset 1: a(1)=1, a(n)=2^(n-1)+sum(i=1, n-1, a(i)*a(n-i)). - Benoit Cloitre, Mar 16 2004 (n+1)*a(n) = (8*n-2)*a(n-1) - (12*n-12)*a(n-2). - Vladeta Jovovic, Jul 16 2004 E.g.f.: exp(4*x)*(BesselI(0, 2*x) - BesselI(1, 2*x)). - Vladeta Jovovic, Dec 03 2004 Inverse binomial transform of A104455. - Philippe Deléham, Nov 30 2007 G.f.: 1/(1-3x-x^2/(1-4x-x^2/(1-4x-x^2/(1-4x-x^2/(1-... (continued fraction). - Paul Barry, Jul 02 2009 a(n)= Sum_{k, 0<=k<=n} A052179(n,k)*(-1)^k. - Philippe Deléham, Nov 28 2009 From Gary W. Adamson, Jul 21 2011: (Start) a(n) = the upper left term in M^n, M = an infinite square production matrix as follows:   3, 1, 0, 0, ...   1, 3, 1, 0, ...   1, 1, 3, 1, ...   1, 1, 1, 3, ...   ... (End) a(n) ~ 2^(n-3/2)*3^(n+3/2)/(n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Jun 29 2013 MATHEMATICA CoefficientList[Series[(1-Sqrt[(1-6*x)/(1-2*x)])/2/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 29 2013 *) PROG (PARI) x='x+O('x^66); Vec((1-sqrt((1-6*x)/(1-2*x)))/(2*x)) /* Joerg Arndt, Mar 31 2013 */ (MAGMA) I:=[3, 10];  cat [n le 2 select I[n] else ((8*n-2)*Self(n-1)-(12*n-12)*Self(n-2))div (n+1): n in [1..30]]; // Vincenzo Librandi, Jan 23 2017 CROSSREFS Cf. A007317, A000108, A014318. Cf. A125145, A146559, A126930. Sequence in context: A192240 A231894 A086444 * A270789 A005493 A138378 Adjacent sequences:  A064610 A064611 A064612 * A064614 A064615 A064616 KEYWORD nonn AUTHOR Karol A. Penson, Sep 24 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 04:25 EDT 2019. Contains 328315 sequences. (Running on oeis4.)