The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068911 Number of n step walks (each step +/-1 starting from 0) which are never more than 2 or less than -2. 19
 1, 2, 4, 6, 12, 18, 36, 54, 108, 162, 324, 486, 972, 1458, 2916, 4374, 8748, 13122, 26244, 39366, 78732, 118098, 236196, 354294, 708588, 1062882, 2125764, 3188646, 6377292, 9565938, 19131876, 28697814, 57395628, 86093442, 172186884, 258280326, 516560652 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Johannes W. Meijer, May 29 2010: (Start) The a(n) represent the number of ways White can force checkmate in exactly (n+1) moves, n>=0, ignoring the fifty-move and the triple repetition rules, in the following chess position: White Ka1, Ra8, Bc1, Nb8, pawns a6, a7, b2, c6, d2, f6, g5 and h6; Black Ke8, Nh8, pawns b3, c7, d3, f7, g6 and h7. (After Noam D. Elkies, see link; diagram 5). Counts all paths of length n, n>=0, starting at the third node on the path graph P_5, see the Maple program. (End) From Alec Jones, Feb 25 2016: (Start) The a(n) are the n-th terms in a "fibonacci-snake" drawn on a rectilinear grid. The n-th term is computed as the sum of the previous terms in cells adjacent to the n-th cell (diagonals included). (This sequence excludes the first term of the snake.) For example: 1 ...  1      1  ...   1 4      1 4 6 ...  1 4 6       1 4 6   ...  and so on.        1 ...  1 2      1 2 ...  1 2        1 2 12 ...  1 2 12 18 (End) LINKS Alois P. Heinz, Table of n, a(n) for n = 0..4191 F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020. Robert Dorward et al., A Generalization of Zeckendorf's Theorem via Circumscribed m-gons, arXiv:1508.07531 [math.NT], 2015. See Example 1.3 p. 4. Noam D. Elkies, New Directions in Enumerative Chess Problems, arXiv:math/0508645 [math.CO], 2005; The Electronic Journal of Combinatorics, 11 (2), 2004-2005. D. Panario, M. Sahin, Q. Wang, W. Webb, General conditional recurrences, Applied Mathematics and Computation, Volume 243, Sep 15 2014, Pages 220-231. Noriaki Sannomiya, H Katsura, Y Nakayama, Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion, arXiv preprint arXiv:1612.02285 [cond-mat.str-el], 2016-2017. See Table I, line 3. Index entries for linear recurrences with constant coefficients, signature (0,3). FORMULA a(n) = A068913(2, n) = 2*A038754(n-1) = 3*a(n-2) = a(n-1)*a(n-2)/a(n-3) starting with a(0)=1, a(1)=2, a(2)=4 and a(3)=6. For n>0: a(2n) = 4*3^(n-1) = 2*a(2n-1); a(2n+1) = 2*3^n = 3*a(2n)/2 = 2*a(2n)-A000079(n-2). G.f.: (1+x)^2/(1-3x^2); a(n) = 2*3^((n+1)/2)*((1-(-1)^n)/6 + sqrt(3)*(1+(-1)^n)/9) - (1/3)*0^n. The sequence 0, 1, 2, 4, ... has a(n) = 2*3^(n/2)*((1+(-1)^n)/6 + sqrt(3)*(1-(-1)^n)/9) - (2/3)*0^n + (1/3)*Sum_{k=0..n} binomial(n, k)*k*(-1)^k. - Paul Barry, Feb 17 2004 a(n) = 2^((3+(-1)^n)/2)*3^((2*n-3-(-1)^n)/4)-((1-(-1)^(2^n)))/6. - Luce ETIENNE, Aug 30 2014 For n > 2, indexing from 0, a(n) = a(n-1)+a(n-2) if n is odd, a(n-1)+a(n-2)+a(n-3) if n is even. - Alec Jones, Feb 25 2016 a(n) = 2*a(n-1) if n is even, a(n-1)+a(n-2) if n is odd. - Vincenzo Librandi, Feb 26 2016 MAPLE with(GraphTheory): G:= PathGraph(5): A:=AdjacencyMatrix(G): nmax:=34; for n from 0 to nmax do B(n):=A^n; a(n):=add(B(n)[3, k], k=1..5) od: seq(a(n), n=0..nmax); # Johannes W. Meijer, May 29 2010 # second Maple program: a:= proc(n) a(n):= `if`(n<2, n+1, (4-irem(n, 2))/2*a(n-1)) end: seq(a(n), n=0..40);  # Alois P. Heinz, Feb 03 2019 MATHEMATICA Join[{1}, Transpose[NestList[{Last[#], 3First[#]}&, {2, 4}, 40]][]] (* Harvey P. Dale, Oct 24 2011 *) PROG (PARI) a(n)=[4, 6][n%2+1]*3^(n\2)\3 \\ Charles R Greathouse IV, Feb 26 2016 (MAGMA) [Floor((5-(-1)^n)*3^Floor(n/2)/3): n in [0..40]]; // Bruno Berselli, Feb 26 2016, after Charles R Greathouse IV. CROSSREFS Cf. A000007, A016116 (without initial term), A068912, A068913 for similar. Equals A060647(n-1)+1. Cf. also A028495, A038754, A048328, A078038, A124302, A306293. Sequence in context: A306315 A104352 A133488 * A243543 A094769 A068018 Adjacent sequences:  A068908 A068909 A068910 * A068912 A068913 A068914 KEYWORD nonn,easy AUTHOR Henry Bottomley, Mar 06 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 25 05:34 EST 2020. Contains 338617 sequences. (Running on oeis4.)