OFFSET
1,1
COMMENTS
By definition, all Mersenne primes are in this sequence. - Roderick MacPhee, Apr 18 2015
LINKS
T. D. Noe, Table of n, a(n) for n=1..10000
K. S. Brown's Mathpages, Reflective and Cyclic Sets of Primes
Cécile Dartyge, Bruno Martin, Joël Rivat, Igor E. Shparlinski, and Cathy Swaenepoel, Reversible primes, arXiv:2309.11380 [math.NT], 2023. See p. 3.
EXAMPLE
349 = 101011101, reverse the sequence of ones and zeros: 101110101 = 373 which is also prime.
MATHEMATICA
Prime[ Select[ Range[100], PrimeQ[ FromDigits[ Reverse[ IntegerDigits[ Prime[ # ], 2]], 2]] &]]
PROG
(C++) for(int p=0; p<100; p++) { int rp = bitrev(p); if(isprime(p) && isprime(rp)) cout << p << " "; }
(Python)
from sympy import isprime, prime
A074832 = [prime(n) for n in range(1, 10**6) if isprime(int(bin(prime(n))[:1:-1], 2))] # Chai Wah Wu, Aug 14 2014
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Robert G. Wilson v, Sep 09 2002
STATUS
approved