login
A074832
Primes whose binary reversal is also prime.
24
3, 5, 7, 11, 13, 17, 23, 29, 31, 37, 41, 43, 47, 53, 61, 67, 71, 73, 83, 97, 101, 107, 113, 127, 131, 151, 163, 167, 173, 181, 193, 197, 199, 223, 227, 229, 233, 251, 257, 263, 269, 277, 283, 307, 313, 331, 337, 349, 353, 359, 373, 383, 409, 421, 431, 433, 443
OFFSET
1,1
COMMENTS
By definition, all Mersenne primes are in this sequence. - Roderick MacPhee, Apr 18 2015
LINKS
K. S. Brown's Mathpages, Reflective and Cyclic Sets of Primes
Cécile Dartyge, Bruno Martin, Joël Rivat, Igor E. Shparlinski, and Cathy Swaenepoel, Reversible primes, arXiv:2309.11380 [math.NT], 2023. See p. 3.
EXAMPLE
349 = 101011101, reverse the sequence of ones and zeros: 101110101 = 373 which is also prime.
MATHEMATICA
Prime[ Select[ Range[100], PrimeQ[ FromDigits[ Reverse[ IntegerDigits[ Prime[ # ], 2]], 2]] &]]
PROG
(C++) for(int p=0; p<100; p++) { int rp = bitrev(p); if(isprime(p) && isprime(rp)) cout << p << " "; }
(Python)
from sympy import isprime, prime
A074832 = [prime(n) for n in range(1, 10**6) if isprime(int(bin(prime(n))[:1:-1], 2))] # Chai Wah Wu, Aug 14 2014
CROSSREFS
Cf. A007500 (primes whose decimal reversal is also prime).
Sequence in context: A096169 A225526 A090670 * A075794 A192864 A135832
KEYWORD
base,easy,nonn
AUTHOR
Robert G. Wilson v, Sep 09 2002
STATUS
approved