login
A372720
a(n) = A000005(n) - A008479(n).
6
0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 3, 1, 1, 3, 1, 4, 3, 3, 1, 4, 1, 3, 1, 4, 1, 7, 1, 1, 3, 3, 3, 4, 1, 3, 3, 5, 1, 7, 1, 4, 4, 3, 1, 4, 1, 2, 3, 4, 1, 1, 3, 5, 3, 3, 1, 10, 1, 3, 4, 1, 3, 7, 1, 4, 3, 7, 1, 4, 1, 3, 3, 4, 3, 7, 1, 5, 1, 3, 1, 10, 3, 3, 3
OFFSET
1,6
COMMENTS
A095960(50) = 3, a(50) = 2.
a(162) = -2 is the first negative term.
LINKS
FORMULA
a(n) = A095960(n) for n in A303554, i.e., for squarefree n or prime powers n.
a(n) = A095960(n) for n in A360767, i.e., for nonsquarefree composite n such that omega(n) > 1 and A003557(n) < A119288(n), since A008479(n) is the number of terms k in row n of A010846 such that k <= A003557(n).
a(n) = A183093(n) - A355432(n).
EXAMPLE
Table of a(n), b(n) = A000005(n), and c(n) = A008479(n) for n <= 12:
n b(n) c(n) a(n)
------------------
1 1 1 0
2 2 1 1
3 2 1 1
4 3 2 1
5 2 1 1
6 4 1 3
7 2 1 1
8 4 3 1
9 3 2 1
10 4 1 3
11 2 1 1
12 6 2 4
a(12) = 4 since 12 has 6 divisors {1, 2, 3, 4, 6, 12}, and row 12 of A369609 has 2 terms {6, 12}.
a(18) = 3 since 18 has 6 divisors {1, 2, 3, 6, 9, 18}, and row 18 of A369609 has 3 terms {6, 12, 18}.
a(50) = 2 since 50 has 6 divisors {1, 2, 5, 10, 25, 50}, and row 50 of A369609 has 4 terms {10, 20, 40, 50}
a(162) = -2 since 162 has 10 divisors {1,2,3,6,9,18,27,54,81,162} but row 162 of A369609 has 12 terms {6,12,18,24,36,48,54,72,96,108,144,162}.
a(500) = 0 since 500 has as many divisors {1,2,4,5,10,20,25,50,100,125,250,500} as terms in row 500 of A369609 {10,20,40,50,80,100,160,200,250,320,400,500}.
MATHEMATICA
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; DivisorSigma[0, n] - Count[Range[n/r], _?(Divisible[r, rad[#]] &)], {n, 120}]
PROG
(PARI) a(n) = my(f=factor(n)[, 1], s); forvec(v=vector(#f, i, [1, logint(n, f[i])]), if(prod(i=1, #f, f[i]^v[i])<=n, s++)); numdiv(n) - s; \\ after A008479 \\ Michel Marcus, Jun 03 2024
KEYWORD
sign
AUTHOR
Michael De Vlieger, May 13 2024
STATUS
approved