login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082117 Fibonacci sequence (mod 6). 10
0, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 0, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 0, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 0, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 0, 1, 1, 2, 3, 5, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Eric Weisstein's World of Mathematics, Fibonacci Number

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

FORMULA

Sequence is periodic with Pisano period 24 = A001175(6).

G.f.: -x*(x^22 + 5*x^21 + 2*x^20 + 3*x^19 + 5*x^18 + 4*x^17 + x^16 + 3*x^15 + 4*x^14 + 5*x^13 + 5*x^12 + 5*x^10 + x^9 + 4*x^8 + 3*x^7 + x^6 + 2*x^5 + 5*x^4 + 3*x^3 + 2*x^2 + x + 1)/((x - 1)*(x + 1)*(x^2 - x + 1)*(x^2 + 1)*(x^2 + x + 1)*(x^4 - x^2 + 1)*(x^4 + 1)*(x^8 - x^4 + 1)). - Colin Barker, Aug 15 2012

MATHEMATICA

Table[Mod[Fibonacci[n], 6], {n, 0, 100}] (* Alonso del Arte, Jul 29 2013 *)

PROG

(MAGMA) [Fibonacci(n) mod 6: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014

(PARI) a(n)=fibonacci(n)%6 \\ Charles R Greathouse IV, Oct 07 2016

CROSSREFS

Cf. A011655, A082115, A079343, A082116, A082117, A079344.

Sequence in context: A171035 A094122 A280185 * A269701 A011157 A205387

Adjacent sequences:  A082114 A082115 A082116 * A082118 A082119 A082120

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein, Apr 03 2003

EXTENSIONS

Added a(0)=0 from Vincenzo Librandi, Feb 04 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 01:25 EDT 2017. Contains 292500 sequences.