login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035343 Triangle of coefficients in expansion of (1+x+x^2+x^3+x^4)^n. 21
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 52, 68, 80, 85, 80, 68, 52, 35, 20, 10, 4, 1, 1, 5, 15, 35, 70, 121, 185, 255, 320, 365, 381, 365, 320, 255, 185, 121, 70, 35, 15, 5, 1, 1, 6, 21, 56, 126, 246, 426, 666 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Coefficient of x^k in (1+x+x^2+x^3+x^4)^n is the number of distinct ways in which k unlabeled objects can be distributed in n labeled urns allowing at most 4 objects to fall in each urn. - N-E. Fahssi, Mar 16 2008

The n-th row has 4n+1 terms (A016813). - Michel Marcus, Sep 08 2013

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.

D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, in G E Bergum et al., eds., Applications of Fibonacci Numbers Vol. 4 1991 pp. 77-90 (Kluwer).

Bao-Xuan Zhu, Linear transformations and strong $ q $-log-concavity for certain combinatorial triangle, arXiv preprint arXiv:1605.00257, 2016

LINKS

T. D. Noe, Rows n = 0..25, flattened

Moussa Ahmia and Hacene Belbachir, Preserving log-convexity for generalized Pascal triangles, Electronic Journal of Combinatorics, 19(2) (2012), #P16.- From N. J. A. Sloane, Oct 13 2012

Nour-Eddine Fahssi, Polynomial Triangles Revisited, arXiv:1202.0228 [math.CO], (25-July-2012)

S. R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2006.

J. E. Freund, Restricted Occupancy Theory - A Generalization of Pascal's Triangle, American Mathematical Monthly, Vol. 63, No. 1 (1956), pp. 20-27.

FORMULA

T(n,k) = sum {i = 0..floor(k/5)} (-1)^i*binomial(n,i)*binomial(n+k-1-5*i,n-1) for n >= 0 and 0 <= k <= 4*n. - Peter Bala, Sep 07 2013

EXAMPLE

Triangle begins:

n\k [0]  [1]  [2]  [3]  [4]  [5]  [6]  [7]  [8]  [9]  [10] [11] [12]

[0] 1;

[1] 1,   1,   1,   1,   1;

[2] 1,   2,   3,   4,   5,   4,   3,   2,   1;

[3] 1,   3,   6,   10,  15,  18,  19,  18,  15,  10,  6,   3,   1;

[4] ...

MAPLE

#Define the r-nomial coefficients for r = 1, 2, 3, ...

rnomial := (r, n, k) -> add((-1)^i*binomial(n, i)*binomial(n+k-1-r*i, n-1), i = 0..floor(k/r)):

#Display the 5-nomials as a table

r := 5:  rows := 10:

for n from 0 to rows do

seq(rnomial(r, n, k), k = 0..(r-1)*n)

end do;

# Peter Bala, Sep 07 2013

MATHEMATICA

Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4)^n, x], {n, 0, 10}]] (* T. D. Noe, Apr 04 2011 *)

PROG

(Maxima) pentanomial(n, k):=coeff(expand((1+x+x^2+x^3+x^4)^n), x, k);

create_list(pentanomial(n, k), n, 0, 6, k, 0, 4*n); \\ Emanuele Munarini, Mar 15 2011

CROSSREFS

Cf. A007318, A027907, A008287. A063260, A063265, A171890, A213651, A213652.

Sequence in context: A017890 A134011 A280913 * A017880 A086144 A131974

Adjacent sequences:  A035340 A035341 A035342 * A035344 A035345 A035346

KEYWORD

nonn,tabf,easy,changed

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from James A. Sellers

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 25 06:41 EDT 2017. Contains 284047 sequences.