This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062050 n-th chunk consists of numbers 1 ... 2^n. 14
 1, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS A005836(a(n+1)) = A107681(n). - Reinhard Zumkeller, May 20 2005 a(k) is the distance between k and the largest power of 2 not exceeding k, where k=n+1. {Consider the sequence of even numbers <= k; after sending the first term to the last position delete all odd-indexed terms; the final term that remains after iterating the process is the a(k)-th even number.} - Lekraj Beedassy, May 26 2005 Triangle read by rows in which row n lists the first 2^(n-1) positive integers, n >= 1, see example. - Omar E. Pol, Sep 10 2013 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 R. Stephan, Some divide-and-conquer sequences ... R. Stephan, Table of generating functions FORMULA a(n) = A053645(n) + 1. a(n) = n - msb(n) + 1 (where msb(n) = A053644(n)). a(n) = 1+floor(n-2^floor(log(n)/log(2))). - Benoit Cloitre, Feb 06 2003 G.f.: 1/(1-x) * ((1-x+x^2)/(1-x) - Sum_{k>=1} 2^(k-1)*x^2^k). - Ralf Stephan, Apr 18 2003 a(1) = 1, a(2n) = 2a(n) - 1, a(2n+1) = 2a(n). - Ralf Stephan, Oct 06 2003 a(n) = if n < 2 then n else 2*a(floor(n/2)) - 1 + n mod 2. - Reinhard Zumkeller, May 07 2012 EXAMPLE From Omar E. Pol, Aug 31 2013: (Start) Written as irregular triangle with row lengths A000079: 1; 1,2; 1,2,3,4; 1,2,3,4,5,6,7,8; 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16; ... Row sums give A007582. (End) MATHEMATICA Flatten[Table[Range[2^n], {n, 0, 6}]] (* Harvey P. Dale, Oct 12 2015 *) PROG (PARI) a(n)=floor(n+1-2^floor(log(n+1-10^-27)/log(2))) (Haskell) a062050 n = if n < 2 then n else 2 * a062050 n' + m - 1             where (n', m) = divMod n 2 -- Reinhard Zumkeller, May 07 2012 CROSSREFS Cf. A053644, A053645. Cf. A092754. Sequence in context: A194103 A074294 A168265 * A233782 A233972 A169778 Adjacent sequences:  A062047 A062048 A062049 * A062051 A062052 A062053 KEYWORD nonn AUTHOR Marc LeBrun, Jun 30 2001 EXTENSIONS Cloitre's formula corrected (formula was off by 1 and used offset 0 instead of 1) by Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 25 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 21:17 EDT 2019. Contains 328038 sequences. (Running on oeis4.)