login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054770 Numbers that are not the sum of distinct Lucas numbers 1,3,4,7,11 ... (A000204). 12
2, 6, 9, 13, 17, 20, 24, 27, 31, 35, 38, 42, 46, 49, 53, 56, 60, 64, 67, 71, 74, 78, 82, 85, 89, 93, 96, 100, 103, 107, 111, 114, 118, 122, 125, 129, 132, 136, 140, 143, 147, 150, 154, 158, 161, 165, 169, 172, 176, 179, 183, 187, 190, 194, 197, 201, 205, 208, 212 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Alternatively, Lucas representation of n includes L_0 = 2. - Fred Lunnon, Aug 25 2001

Conjecture: this is the sequence of numbers for which the base phi representation includes phi itself, where phi = (1 + sqrt(5))/2 = the golden ratio. Example: let r = phi; then 6 = r^3 + r + r^(-4). - Clark Kimberling, Oct 17 2012

This conjecture is proved in my paper 'Base phi representations and golden mean beta-expansions', using the formula by Wilson/Agol/Carlitz et al. - Michel Dekking, Jun 25 2019

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000

L. Carlitz, R. Scoville, and V. E. Hoggatt, Jr., Lucas representations, Fibonacci Quart. 10 (1972), 29-42, 70, 112.

Weiru Chen, Jared Krandel, Interpolating Classical Partitions of the Set of Positive Integers, arXiv:1810.11938 [math.NT], 2018. See sequence D2 p. 4.

M. Dekking, Base phi representations and golden mean beta-expansions, arXiv:1906.08437 [math.NT], 2019.

FORMULA

a(n) = floor(((5+sqrt(5))/2)*n)-1 (conjectured by David W. Wilson; proved by Ian Agol (iagol(AT)math.ucdavis.edu), Jun 08 2000)

a(n) = A000201(n) + 2*n - 1. - Michel Dekking, Sep 07 2017

G.f.: x*(x+1)/(1-x)^2 + Sum_{i>=1} (floor(i*phi)*x^i), where phi = (1 + sqrt(5))/2. - Iain Fox, Dec 19 2017

Ian Agol tells me that David W. Wilson's formula is proved in the Carlitz, Scoville, Hoggatt paper 'Lucas representations'. See Equation (1.12), and use A(A(n))+n = B(n)+n-1 = A(n)+2*n-1, the well known formulas for the lower Wythoff sequence A = A000201, and the upper Wythoff sequence B = A001950. - Michel Dekking, Jan 04 2018

MAPLE

A054770 := n -> floor(n*(sqrt(5)+5)/2)-1;

MATHEMATICA

Complement[Range[220], Total/@Subsets[LucasL[Range[25]], 5]] (* Harvey P. Dale, Feb 27 2012 *)

Table[Floor[n (Sqrt[5] + 5) / 2] - 1, {n, 60}] (* Vincenzo Librandi, Oct 30 2018

PROG

(PARI) a(n)=floor(n*(sqrt(5)+5)/2)-1

(MAGMA) [Floor(n*(Sqrt(5)+5)/2)-1: n in [1..60]]; // Vincenzo Librandi, Oct 30 2018

CROSSREFS

Cf. A003263, A003622, A022342. Complement of A063732.

Sequence in context: A184869 A047276 A171639 * A184745 A113689 A190707

Adjacent sequences:  A054767 A054768 A054769 * A054771 A054772 A054773

KEYWORD

nonn,easy

AUTHOR

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 28 2000

EXTENSIONS

More terms from James A. Sellers, May 28 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 02:59 EST 2019. Contains 329085 sequences. (Running on oeis4.)