login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052920 a(n) = a(n-3) + a(n-5) with initial values 1,0,0,1,0. 8
1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 3, 1, 3, 4, 2, 6, 5, 5, 10, 7, 11, 15, 12, 21, 22, 23, 36, 34, 44, 58, 57, 80, 92, 101, 138, 149, 181, 230, 250, 319, 379, 431, 549, 629, 750, 928, 1060, 1299, 1557, 1810, 2227, 2617, 3109, 3784, 4427, 5336, 6401, 7536, 9120, 10828 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
From Bob Selcoe, May 19 2014: (Start)
Since a(n) is a recurrence of the form a(n) = a(n-F1) + a(n-F2) where seed values are a(0)=1 and a(n)=0 for n<0 exclusively (that is, a(n) is the number of compositions of n into parts F1 and F2), apply the following definitions and operations:
I. Generally, let m' be the maximum and k' be the minimum values such that n = F1*m' + (F2-F1)*k'.
Ia. In this sequence, since F1=3 and F2=5, then n = 3*m' + 2*k'. So for example, when n=49, m'=15 and k'=2 because 49 = 3*15 + 2*2.
II. Let G be the greatest common factor of F1 and F2 (in this sequence, G=1).
IIa. When n = F1*m' + (F2-F1)*k' is null, a(n)=0. When G=1, the greatest such value of n is F1*F2 - F1 - F2. So in this sequence, the greatest value of n where a(n)=0 is 3*5 - 3 - 5 = 7.
III. Then generally: a(n) = Sum_{i=0..j} ((m'-(F2-F1)*i)!/(k'+F1*i/G)!*(m'-k'-F2*i/G)!) where j is the maximum integer value such that j <= G*(m'-k')/F2.
IIIa. In this sequence, a(n) = Sum_{i=0..j} ((m'-2*i)!/(k'+3*i)!*(m'-k'-5*i)!). For example, when n=49, m'=15 and k'=2; therefore j=2 because 1*(15-2)/5 = 2.6. Thus a(49) = 15!/(2!*13!) + 13!/(5!*8!) + 11!/(8!*3!) = 105 + 1287 + 165 = 1557.
IV. Therefore: a(n) can be solved in closed form for all recurrences of this type.
Alternatively, a(n) equals the sum of the diagonal in the binomial triangle (i.e., Pascal's Triangle, A007318) with slope (F2-F1)/F1, starting at C(m',k'). In this sequence, the slope is 2/3. (End)
LINKS
Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, Predators and altruists arriving on jammed Riviera, arXiv:2401.01225 [math.CO], 2024. See p. 16.
Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
FORMULA
G.f.: 1/(1 - x^3 - x^5).
a(n) = a(n-3) + a(n-5), with a(0)=1, a(1)=0, a(2)=0, a(3)=1, a(4)=0.
a(n) = Sum_{alpha=RootOf(-1 +z^3 +z^5)} (1/3233)*(-60 + 661*alpha + 100*alpha^2 + 36*alpha^3 + 250*alpha^4)*alpha^(-1-n).
a(n) = Sum_{i=0..j} ( (m'-2*i)!/(k'+3*i)!*(m'-k'-5*i)!) (see comments for definitions of variables).
EXAMPLE
a(49) = 15!/(2!*13!) + 13!/(5!*8!) + 11!/(8!*3!) = 105 + 1287 + 165 = 1557.
MAPLE
spec := [S, {S=Sequence(Prod(Union(Z, Prod(Z, Z, Z)), Z, Z))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
seq(coeff(series(1/(1 -x^3 -x^5), x, n+1), x, n), n = 0..70); # G. C. Greubel, Oct 16 2019
MATHEMATICA
LinearRecurrence[{0, 0, 1, 0, 1}, {1, 0, 0, 1, 0}, 70] (* Harvey P. Dale, Jan 12 2016 *)
PROG
(PARI) my(x='x+O('x^70)); Vec(1/(1 - x^3 - x^5)) \\ G. C. Greubel, Oct 16 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(1 - x^3 - x^5) )); // G. C. Greubel, Oct 16 2019
(Sage)
def A052920_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/(1 - x^3 - x^5)).list()
A052920_list(70) # G. C. Greubel, Oct 16 2019
(GAP) a:=[1, 0, 0, 1, 0];; for n in [6..70] do a[n]:=a[n-3]+a[n-5]; od; a; # G. C. Greubel, Oct 16 2019
CROSSREFS
Cf. A007318 (binomial triangle).
Sequence in context: A092865 A098925 A102426 * A320250 A089141 A336084
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 05 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 20:26 EDT 2024. Contains 371781 sequences. (Running on oeis4.)