login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052921 Expansion of (1-x)/(1 - 3*x + 2*x^2 - x^3). 8
1, 2, 4, 9, 21, 49, 114, 265, 616, 1432, 3329, 7739, 17991, 41824, 97229, 226030, 525456, 1221537, 2839729, 6601569, 15346786, 35676949, 82938844, 192809420, 448227521, 1042002567, 2422362079, 5631308624, 13091204281, 30433357674 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The Ca3 sums, see A180662, of triangle A065941 equal the terms of this sequence. - Johannes W. Meijer, Aug 16 2011

First differences of A095263. - R. J. Mathar, Nov 23 2011

Partial sums of A034943 starting (1, 1, 2, 5, 12, 28, 65, ...). - Gary W. Adamson, Feb 15 2012

a(n) is the number of n (decimal) digit integers x such that all digits of x are odd and all digits of 6x are even. - Robert Israel, Apr 17 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643-651.

I. M. Gessel, Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 905

Index entries for linear recurrences with constant coefficients, signature (3,-2,1).

FORMULA

G.f.: (1-x)/(1 - 3*x + 2*x^2 - x^3).

a(n) = 3(a(n-1) - 2*a(n-2) + a(n-3), with a(0)=1, a(1)=2, a(2)=4.

a(n) = Sum_{alpha=RootOf(-1 + 3*z - 2*z^2 + z^3)} (1/23)*(8 - 5*alpha + 7*alpha^2)*alpha^(-1-n).

Binomial transform of the Padovan sequence A000931(n+5). a(n) = Sum{k=0..n+1} C(n+k+1, n-2*k). - Paul Barry, Jun 21 2004

a(n) = A000931(3*n + 5). - Michael Somos, Sep 18 2012

a(n) = Sum_{i=1..n+1} A000931(3*i). - David Nacin, Nov 03 2019

EXAMPLE

G.f. = 1 + 2*x + 4*x^2 + 9*x^3 + 21*x^4 + 49*x^5 + 114*x^6 + 265*x^7 + ...

MAPLE

spec := [S, {S=Sequence(Union(Z, Z, Prod(Sequence(Z), Z, Z, Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..29);

A052921 := proc(n): add(binomial(n+k+1, n-2*k), k=0..n+1) end: seq(A052921(n), n=0..29); # Johannes W. Meijer, Aug 16 2011

MATHEMATICA

LinearRecurrence[{3, -2, 1}, {1, 2, 4}, 40] (* Vincenzo Librandi, Feb 14 2012 *)

CoefficientList[Series[(1-x)/(1-3*x+2*x^2-x^3), {x, 0, 30}], x] (* Harvey P. Dale, Nov 09 2019 *)

PROG

(MAGMA) I:=[1, 2, 4]; [n le 3 select I[n] else 3*Self(n-1)-2*Self(n-2) +Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012

(PARI) my(x='x+O('x^40)); Vec((1-x)/(1 -3*x +2*x^2 -x^3)) \\ G. C. Greubel, Oct 16 2019

(Sage)

def A077952_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P((1-x)/(1 -3*x +2*x^2 -x^3)).list()

A077952_list(40) # G. C. Greubel, Oct 16 2019

(GAP) a:=[1, 2, 4];; for n in [4..40] do a[n]:=3*a[n-1]-2*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Oct 16 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1-3*x+2*x^2-x^3) )); // Marius A. Burtea, Oct 16 2019

CROSSREFS

Cf. A000931, A034943.

Cf. A097550, A137531.

Sequence in context: A101891 A119967 A266232 * A219150 A322325 A275864

Adjacent sequences:  A052918 A052919 A052920 * A052922 A052923 A052924

KEYWORD

nonn,easy

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 8 14:52 EDT 2020. Contains 333314 sequences. (Running on oeis4.)