This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102426 Triangle read by rows giving coefficients of polynomials defined by F(0)=0, F(1)=1, F(n) = x*F(n-1) + F(n-2). 19
 0, 1, 1, 1, 1, 2, 1, 1, 3, 1, 3, 4, 1, 1, 6, 5, 1, 4, 10, 6, 1, 1, 10, 15, 7, 1, 5, 20, 21, 8, 1, 1, 15, 35, 28, 9, 1, 6, 35, 56, 36, 10, 1, 1, 21, 70, 84, 45, 11, 1, 7, 56, 126, 120, 55, 12, 1, 1, 28, 126, 210, 165, 66, 13, 1, 8, 84, 252, 330, 220, 78, 14, 1, 1, 36, 210, 462, 495, 286, 91 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Essentially the same as A098925: a(0)=0 followed by A098925. - R. J. Mathar, Aug 30 2008 F(n) + 2x * F(n-1) gives Lucas polynomials (cf. A034807). - Maxim Krikun (krikun(AT)iecn.u-nancy.fr), Jun 24 2007 After the initial 0, these are the nonzero coefficients of the Fibonacci polynomials; see the Mathematica section. - Clark Kimberling, Oct 10 2013 Aside from signs and index shift, the coefficients of the characteristic polynomial of the Coxeter adjacency matrix for the Coxeter group A_n related to the Chebyshev polynomial of the second kind (cf. Damianou link p. 19). - Tom Copeland, Oct 11 2014 REFERENCES Dominique Foata and Guo-Niu Han, Multivariable tangent and secant q-derivative polynomials, Manuscript, Mar 21 2012 LINKS R. Andre-Jeannin, A generalization of Morgan-Voyce polynomials, The Fibonacci Quarterly 32.3 (1994): 228-31. H.-H. Chern, H.-K. Hwang, T.-H. Tsai, Random unfriendly seating arrangement in a dining table, arXiv preprint arXiv:1406.0614 [math.PR], 2014. T. Copeland, Addendum to Elliptic Lie Triad P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014. G. Ferri, The appearance of Fibonacci and Lucas numbers in the simulation of electrical power lines supplied by two sides, The Fibonacci Quarterly 35.2 (1997): 149-55. Dominique Foata and Guo-Niu Han, Multivariable tangent and secant q-derivative polynomials, Moscow Journal of Combinatorics and Number Theory, vol. 2, issue 3, 2012, pp. 34-84, [pp. 232-282]. G. Hetyei, Hurwitzian continued fractions containing a repeated constant and an arithmetic progression, arXiv preprint arXiv:1211.2494 [math.CO], 2012. - From N. J. A. Sloane, Jan 02 2013 Z. Trzaska, On Fibonacci hyberbolic geometry and modified number triangles, Fibonacci Quarterly, 34.2 (1996): 129-38. FORMULA Alternatively, as n is even or odd: T(n-2, k) + T(n-1, k-1) = T(n, k), T(n-2, k) + T(n-1, k) = T(n, k) T(n, k)=binomial(floor(n/2)+k, floor((n-1)/2-k) ). - Paul Barry, Jun 22 2005 Beginning with the second polynomial in the example and offset=0, P(n,t)= sum(j=0,..,n, binomial(n-j,j)*x^j) with the convention that 1/k! is zero for k=-1,-2,..., i.e., 1/k!=limit 1/(k+a)! as a tends to zero. - Tom Copeland, Oct 11 2014 From Tom Copeland, Jan 19 2016: (Start) O.g.f.: [x + x^2 - x^3] / [1 - (2+t)x^2 + x^4] = [x^2 (even part) + x(1-x^2) (odd)] / [1 - (2+t)x^2 + x^4]. Recursion relations: A) p(n,t) = p(n-1,t) + p(n-2,t) for n=2,4,6,8,... B) p(n,t) = t p(n-1,t) + p(n-2,t) for n=3,5,7,... C) a(n,k) = a(n-2,k) + a(n-1,k) for n=4,6,8,... D) a(n,k) = a(n-2,k) + a(n-1,k-1) for n=3,5,7,... Relation A generalized to MV(n,t;r) =  P(2n+1,t) + r R(2n,t) for n=1,2,3,.. (cf. A078812 and A085478) is the generating relation on p. 229 of Andre-Jeannine for the generalized Morgan-Voyce polynomials, e.g., MV(2,t;r) = p(5,t) + r p(4,t) = (1 + 3t + t^2) + r (2 + t) = (1 + 2r) +  (3 + r) t + t^2, so P(n,t) = MV(n-4,t;1) for n=4,6,8,.. . The even and odd polynomials are also presented in Trzaska and Ferri. Dropping the initial 0 and re-indexing with initial m=0 gives the row polynomials Fb(m,t) = p(n+1,t) below with o.g.f. G(t,x)/x, starting with Fb(0,t) = 1, Fb(1,t) = 1, Fb(2,t) = 1 + t, and Fb(3,t) = 2 + t . The o.g.f. x/G(x,t) = [1 - (2+t)x^2 + x^4] / [1 + x - x^2] then generates a sequence of polynomials IFb(t) such that the convolution Sum(k=0 to n) IFb(n-k,t) Fb(k,t) vanishes for n>1 and is one for n=0. These linear polynomials have the basic Fibonacci numbers A000045 as an overall factor: IFb(0,t) =  1 IFb(1,t) = -1, IFb(2,t) = -t IFb(3,t) = -1 (1-t) IFb(4,t) =  2 (1-t) IFb(5,t) = -3 (1-t) IFb(6,t) =  5 (1-t) IFb(7,t) = -8 (1-t) IFb(8,t) = 13 (1-t) ... . (End) EXAMPLE The first few polynomials are: 0 1 1 x + 1 2x + 1 x^2 + 3x + 1 3x^2 + 4x + 1 ------------------ From Tom Copeland, Jan 19 2016: (Start) [n]: 0:  0 1:  1 2:  1 3:  1  1 4:  2  1 5:  1  3  1 6:  3  4  1 7:  1  6  5   1 8:  4 10  6   1 9:  1 10 15   7   1 10: 5 20 21   8   1 11: 1 15 35  28   9  1 12: 6 35 56  36  10  1 13: 1 21 70  84  45 11 1 (End) MATHEMATICA Table[ Select[ CoefficientList[ Fibonacci[n, x], x], 0 < # &], {n, 0, 17}] // Flatten (* Clark Kimberling, Oct 10 2013 and slightly modified by Robert G. Wilson v, May 03 2017 *) CROSSREFS Upward diagonals sums are A062200. Downward rows are A102427. Row sums are A000045. Row terms reversed = A011973. Also A102427, A102428, A102429. All of A011973, A092865, A098925, A102426, A169803 describe essentially the same triangle in different ways. Cf. A078812, A085478. Sequence in context: A035667 A092865 A098925 * A052920 A089141 A245717 Adjacent sequences:  A102423 A102424 A102425 * A102427 A102428 A102429 KEYWORD easy,nonn,tabf AUTHOR Russell Walsmith, Jan 08 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 21 19:52 EDT 2017. Contains 290906 sequences.