login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159685 Maximal product of distinct primes whose sum is <= n. 3
1, 2, 3, 3, 6, 6, 10, 15, 15, 30, 30, 42, 42, 70, 105, 105, 210, 210, 210, 210, 330, 330, 462, 462, 770, 1155, 1155, 2310, 2310, 2730, 2730, 2730, 2730, 4290, 4290, 6006, 6006, 10010, 15015, 15015, 30030, 30030, 30030, 30030, 39270, 39270, 46410, 46410 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Equivalently, largest value of the LCM of the partitions of n into primes.

Equivalently, maximal number of times a permutation of length n, with prime cycle lengths, can operate on itself before returning to the initial permutation.

If the requirement that primes are distinct is dropped, this becomes A000792. - Charles R Greathouse IV, Jul 10 2012

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000

M. Deléglise and J.-L. Nicolas, Maximal product of primes whose sum is bounded, arXiv 1207.0603 [math.NT] (2012).

Marc Deléglise and Jean-Louis Nicolas, On the Largest Product of Primes with Bounded Sum, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.8.

Marc Deléglise, Jean-Louis Nicolas, The Landau function and the Riemann hypothesis, Univ. Lyon (France, 2019).

FORMULA

a(n) <= A002809(n) and A008475(a(n)) <= n (see (1.2) and (1.4) in Deléglise-Nicolas 2012). - Jonathan Sondow, Jul 04 2012.

EXAMPLE

A permutation of length 10 can have prime cycle lengths of 2+3+5; so when repeatedly applied to itself, can produce at most 2*3*5 different permutations.

The products of distinct primes whose sum is <= 10 are 1 (the empty product), 2, 3, 5, 7, 2*3=6, 2*5=10, 2*7=14, 3*5=15, 3*7=21, and 2*3*5=30. The maximum is 30, so a(10) = 30. - Jonathan Sondow, Jul 06 2012

MAPLE

with(numtheory):

b:= proc(n, i) option remember; local p; p:= ithprime(max(i, 1));

      `if`(n=0, 1, `if`(i<1, 0,

       max(b(n, i-1), `if`(p>n, 0, b(n-p, i-1)*p))))

    end:

a:= proc(n) option remember;

     `if`(n=0, 1, max(b(n, pi(n)), a(n-1)))

    end:

seq(a(n), n=1..100);  # Alois P. Heinz, Jun 04 2012

MATHEMATICA

temp=Series[Times @@ (1/(1-q[ # ] x^#)& /@ Prepend[Prime /@ Range[24], 1]), {x, 0, Prime[24]}]; Table[Max[List @@ Expand[Coefficient[temp, x^n]]/. q[a_]^_ ->q[a] /.q->Identity], {n, 64}]

(* Second program: *)

b[n_, i_] := b[n, i] = Module[{p = Prime[Max[i, 1]]}, If[n == 0, 1, If[i < 1, 0, Max[b[n, i-1], If[p > n, 0, b[n-p, i-1]*p]]]]]; a[n_] := a[n] = If[n == 0, 1, Max[b[n, PrimePi[n]], a[n-1]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 05 2013, translated from Alois P. Heinz's Maple program *)

CROSSREFS

Cf. A077011, A000793, A034891.

Sequence in context: A039856 A301703 A143715 * A251729 A187763 A187262

Adjacent sequences:  A159682 A159683 A159684 * A159686 A159687 A159688

KEYWORD

nonn

AUTHOR

Wouter Meeussen, Apr 19 2009, May 02 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 23:26 EST 2019. Contains 329242 sequences. (Running on oeis4.)