The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244040 Sum of digits of n in fractional base 3/2. 17
 0, 1, 2, 2, 3, 4, 3, 4, 5, 3, 4, 5, 5, 6, 7, 4, 5, 6, 5, 6, 7, 7, 8, 9, 5, 6, 7, 5, 6, 7, 7, 8, 9, 8, 9, 10, 5, 6, 7, 7, 8, 9, 6, 7, 8, 7, 8, 9, 9, 10, 11, 9, 10, 11, 5, 6, 7, 7, 8, 9, 8, 9, 10, 6, 7, 8, 8, 9, 10, 8, 9, 10, 9, 10, 11, 11, 12, 13, 10, 11, 12, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The base 3/2 expansion is unique, and thus the sum of digits function is well-defined. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 FORMULA a(0)=0, a(3n+r) = a(2n)+r for n >= 0 and r = 0, 1, 2. - David Radcliffe, Aug 21 2021 EXAMPLE In base 3/2 the number 7 is represented by 211 and so a(7) = 2 + 1 + 1 = 4. MATHEMATICA a[n_]:= a[n]= If[n==0, 0, a[2*Floor[n/3]] + Mod[n, 3]]; Table[a[n], {n, 0, 85}] (* G. C. Greubel, Aug 20 2019 *) PROG (Sage) def base32sum(n):     L, i = [n], 1     while L[i-1]>2:         x=L[i-1]         L[i-1]=x.mod(3)         L.append(2*floor(x/3))         i+=1     return sum(L) [base32sum(n) for n in [0..85]] (Haskell) a244040 0 = 0 a244040 n = a244040 (2 * n') + t where (n', t) = divMod n 3 -- Reinhard Zumkeller, Sep 05 2014 (Python) a244040 = lambda n: a244040((n // 3) * 2) + (n % 3) if n else 0 # David Radcliffe, Aug 21 2021 CROSSREFS Cf. A024629, A007953, A000120, A053735, A244041, A246435. Sequence in context: A285325 A135529 A061282 * A338913 A328803 A328804 Adjacent sequences:  A244037 A244038 A244039 * A244041 A244042 A244043 KEYWORD nonn,base AUTHOR James Van Alstine, Jun 17 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 18:11 EDT 2022. Contains 356949 sequences. (Running on oeis4.)