The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053735 Sum of digits of (n written in base 3). 89
 0, 1, 2, 1, 2, 3, 2, 3, 4, 1, 2, 3, 2, 3, 4, 3, 4, 5, 2, 3, 4, 3, 4, 5, 4, 5, 6, 1, 2, 3, 2, 3, 4, 3, 4, 5, 2, 3, 4, 3, 4, 5, 4, 5, 6, 3, 4, 5, 4, 5, 6, 5, 6, 7, 2, 3, 4, 3, 4, 5, 4, 5, 6, 3, 4, 5, 4, 5, 6, 5, 6, 7, 4, 5, 6, 5, 6, 7, 6, 7, 8, 1, 2, 3, 2, 3, 4, 3, 4, 5, 2, 3, 4, 3, 4, 5, 4, 5, 6, 3, 4, 5, 4, 5, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also the fixed point of the morphism 0->{0,1,2}, 1->{1,2,3}, 2->{2,3,4}, etc. - Robert G. Wilson v, Jul 27 2006 a(A062318(n)) = n and a(m) < n for m < A062318(n). - Reinhard Zumkeller, Feb 26 2008 a(n) = A138530(n,3) for n > 2. - Reinhard Zumkeller, Mar 26 2008 LINKS T. D. Noe, Table of n, a(n) for n = 0..10000 F. T. Adams-Watters, F. Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009) 09.5.6 Michael Gilleland, Some Self-Similar Integer Sequences J.-C. Puchta, J. Spilker, Altes und Neues zur Quersumme, preprint J.-C. Puchta, J. Spilker, Altes und Neues zur Quersumme, Math. Semesterber, 49(2002), 209-226. V. Shevelev, Compact integers and factorials, Acta Arith. 126 (2007), no.3, 195-236 (cf. p.205). Robert Walker, Self Similar Sloth Canon Number Sequences Eric Weisstein's World of Mathematics, Digit Sum FORMULA a(0) = 0, a(3n) = a(n), a(3n + 1) = a(n) + 1, a(3n + 2) = a(n) + 2. - Benoit Cloitre, Dec 19 2002 a(n) = A062756(n) + 2*A081603(n). - Reinhard Zumkeller, Mar 23 2003 G.f.: (Sum_{k >= 0} (x^(3^k) + 2*x^(2*3^k))/(1 + x^(3^k) + x^(2*3^k)))/(1 - x). - Michael Somos, Mar 06 2004, corrected by Franklin T. Adams-Watters, Nov 03 2005 In general, the sum of digits of (n written in base b) has generating function (Sum_{k>=0} (Sum_{0 <= i < b} i*x^(i*b^k))/(Sum_{i=0..b-1} x^(i*b^k)))/(1-x). - Franklin T. Adams-Watters, Nov 03 2005 First differences of A094345. - Vladeta Jovovic, Nov 08 2005 a(n) = n - 2*Sum_{k>0} floor(n/3^k) = n - 2*A054861(n). - Benoit Cloitre, Dec 19 2002 a(n) <= 2*log_3(n+1). - Vladimir Shevelev, Jun 01 2011 a(n) = Sum_{k>=0} A030341(n, k). - Philippe Deléham, Oct 21 2011 G.f. satisfies G(x) = (x+2*x^2)/(1-x^3) + (1+x+x^2)*G(x^3), and has a natural boundary at |x|=1. - Robert Israel, Jul 02 2015 a(n) = A056239(A006047(n)). - Antti Karttunen, Jun 03 2017 a(n) = A000120(A289813(n)) + 2*A000120(A289814(n)). - Antti Karttunen, Jul 20 2017 a(0) = 0; a(n) = a(n - 3^floor(log_3(n))) + 1. - Ilya Gutkovskiy, Aug 23 2019 EXAMPLE a(20) = 2 + 0 + 2 = 4 because 20 is written as 202 base 3. From Omar E. Pol, Feb 20 2010: (Start) This can be written as a triangle with row lengths A025192 (see the example in the entry A000120): 0, 1,2, 1,2,3,2,3,4, 1,2,3,2,3,4,3,4,5,2,3,4,3,4,5,4,5,6, 1,2,3,2,3,4,3,4,5,2,3,4,3,4,5,4,5,6,3,4,5,4,5,6,5,6,7,2,3,4,3,4,5,4,5,6,3,... where the k-th row contains a(3^k+i) for 0<=i<2*3^k and converges to A173523 as k->infinity. (End) [Changed conjectures to statements in this entry. - Franklin T. Adams-Watters, Jul 02 2015] G.f. = x + 2*x^2 + x^3 + 2*x^4 + 3*x^5 + 2*x^6 + 3*x^7 + 4*x^8 + x^9 + 2*x^10 + ... MAPLE seq(convert(convert(n, base, 3), `+`), n=0..100); # Robert Israel, Jul 02 2015 MATHEMATICA Table[Plus @@ IntegerDigits[n, 3], {n, 0, 100}] (* or *) Nest[Join[#, # + 1, # + 2] &, {0}, 6] (* Robert G. Wilson v, Jul 27 2006 and modified Jul 27 2014 *) PROG (PARI) {a(n) = if( n<1, 0, a(n\3) + n%3)}; /* Michael Somos, Mar 06 2004 */ (PARI) A053735(n)=sumdigits(n, 3) \\ Requires version >= 2.7. Use sum(i=1, #n=digits(n, 3), n[i]) in older versions. - M. F. Hasler, Mar 15 2016 (Haskell) a053735 = sum . a030341_row -- Reinhard Zumkeller, Feb 21 2013, Feb 19 2012 (Scheme) (define (A053735 n) (let loop ((n n) (s 0)) (if (zero? n) s (let ((d (mod n 3))) (loop (/ (- n d) 3) (+ s d)))))) ;; For R6RS standard. Use modulo instead of mod in older Schemes like MIT/GNU Scheme. - Antti Karttunen, Jun 03 2017 (MAGMA) [&+Intseq(n, 3):n in [0..104]]; // Marius A. Burtea, Jan 17 2019 (MATLAB) m=1; for u=0:104; sol(m)=sum(dec2base(u, 3)-'0'); m=m+1; end sol; % Marius A. Burtea, Jan 17 2019 CROSSREFS Cf. A000120, A007953, A053737, A065363, A007089, A173523. See A134451 for iterations. Cf. A003137. Related base-3 sequences: A006047, A053735, A134451, A230641, A230642, A230643, A230853, A230854, A230855, A230856, A230639, A230640, A010063 (trajectory of 1), A286585, A286632, A289813, A289814. Sequence in context: A147844 A291985 A317192 * A033667 A033923 A233420 Adjacent sequences:  A053732 A053733 A053734 * A053736 A053737 A053738 KEYWORD base,nonn,easy AUTHOR Henry Bottomley, Mar 28 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 05:44 EDT 2020. Contains 337166 sequences. (Running on oeis4.)