This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081277 Square array of unsigned coefficients of Chebyshev polynomials of the first kind. 19
 1, 1, 1, 1, 3, 2, 1, 5, 8, 4, 1, 7, 18, 20, 8, 1, 9, 32, 56, 48, 16, 1, 11, 50, 120, 160, 112, 32, 1, 13, 72, 220, 400, 432, 256, 64, 1, 15, 98, 364, 840, 1232, 1120, 576, 128, 1, 17, 128, 560, 1568, 2912, 3584, 2816, 1280, 256, 1, 19, 162, 816, 2688, 6048, 9408, 9984, 6912 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Rows include A011782, A001792, A001793, A001794, A006974. Formatted as a triangular array, this is [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] (see construction in A084938 ). - Philippe Deléham, Aug 09 2005 Antidiagonal sums are in A025192. - Philippe Deléham, Dec 04 2006 Binomial transform of n-th row of the triangle (followed by zeros) = n-th row of the A142978 array and n-th column of triangle A104698. - Gary W. Adamson, Jul 17 2008 When formatted as a triangle, A038763=fusion of polynomial sequences (x+1)^n and (x+1)^n; see A193722 for the definition of fusion of two polynomial sequences or triangular arrays.  Row n of A038763, as a triangle, consists of coefficients of the product (x+1)*(x+2)^n. - Clark Kimberling, Aug 04 2011 LINKS FORMULA T(n, k) := (n+2k)C(n+k-1, k-1)2^(n-1)/k, k>0. T(n, 0) defined by G.f. (1-x)/(1-2x). Other rows are defined by (1-x)/(1-2x)^n. T(n, 0) = 0 if n<0, T(0, k) = 0 if k<0, T(0, 0) = T(1, 0) = 1, T(n, k) = T(n, k-1) + 2*T(n-1, k); for example, 160 = 48 + 2*56 for n = 4 and k = 2. -Philippe Deléham, Aug 12 2005 G.f. of the triangular interpretation: (-1+x*y)/(-1+2*x*y+x). - R. J. Mathar, Aug 11 2015 EXAMPLE Rows begin 1, 1, 2, 4, 8,... 1, 3, 8, 20, 48,... 1, 5, 18, 56, 160,... 1, 7, 32, 120, 400,... 1, 9, 50, 220, 840,... ... As a triangle: 1 1...1 1...3...2 1...5...8...4 1...7...18..20...8 MATHEMATICA (* Program generates triangle A081277 as the self-fusion of Pascal's triangle *) z = 8; a = 1; b = 1; c = 1; d = 1; p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A081277 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* abs val of A118800 *) Factor[w[6, x]] (* Clark Kimberling, Aug 04 2011 *) CROSSREFS Cf. A079628. Cf. A142978, A104698. Cf. A167580 and A167591. - Johannes W. Meijer, Nov 23 2009 Sequence in context: A129675 A232206 A209559 * A079628 A140287 A077951 Adjacent sequences:  A081274 A081275 A081276 * A081278 A081279 A081280 KEYWORD easy,nonn,tabl AUTHOR Paul Barry, Mar 16 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 20:34 EDT 2018. Contains 316275 sequences. (Running on oeis4.)