This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053839 a(n) = (sum of digits of n written in base 4) modulo 4. 9
 0, 1, 2, 3, 1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 0, 1, 2, 3, 2, 3, 0, 1, 3, 0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 0, 3, 0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 0, 2, 3, 0, 1, 1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 0, 1, 2, 3, 2, 3, 0, 1, 3, 0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 0, 3, 0, 1, 2, 0, 1, 2, 3, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) is the third row of the array in A141803, so a(n) = A141803(A034856(n+1)) for n>0. - Andrey Zabolotskiy, May 16 2016 This is the fixed point of the morphism 0->0123, 1->1230, 2->2301, 3->3012 starting with 0.  Let t be the (nonperiodic) sequence of positions of 0, and likewise, u for 1, v for 2, and w for 3; then t(n)/n -> 4, u(n)/n -> 4, v(n)/n -> 4,  w(n)/n -> 4, and t(n) + u(n) + v(n) + w(n) = 16*n - 6 for n >= 1. - Clark Kimberling, May 31 2017 LINKS Robert Israel, Table of n, a(n) for n = 0..10000 Glen Joyce C. Dulatre, Jamilah V. Alarcon, Vhenedict M. Florida, Daisy Ann A. Disu, On Fractal Sequences, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 109-113. Robert Walker, Self Similar Sloth Canon Number Sequences FORMULA a(n) = A010873(A053737(n)). - Andrey Zabolotskiy, May 18 2016 G.f. G(x) satisfies x^81*G(x) - (x^72+x^75+x^78+x^81)*G(x^4) + (x^48+x^60+x^63-x^64+x^72+x^75-x^76+x^78-x^79-x^88-x^91-x^94)*G(x^16) + (-1+x^16-x^48-x^60-x^63+2*x^64+x^76+x^79-x^80+x^112+x^124+x^127-x^128-x^140-x^143)*G(x^64) + (1-x^16-x^64+x^80-x^256+x^272+x^320-x^336)*G(x^256) = 0. - Robert Israel, May 18 2016 EXAMPLE First three iterations of the morphism 0->0123, 1->1230, 2->2301, 3->3012: 0123 0123123023013012 0123123023013012123023013012012323013012012312303012012312302301 MAPLE seq(convert(convert(n, base, 4), `+`) mod 4, n=0..100); # Robert Israel, May 18 2016 MATHEMATICA Mod[Total@ IntegerDigits[#, 4], 4] & /@ Range[0, 120] (* Michael De Vlieger, May 17 2016 *) s = Nest[Flatten[# /. {0 -> {0, 1, 2, 3}, 1 -> {1, 2, 3, 0}, 2 -> {2, 3, 0, 1}, 3 -> {3, 0, 1, 2}}] &, {0}, 9];   (* - Clark Kimberling, May 31 2017 *) PROG (PARI) a(n) = vecsum(digits(n, 4)) % 4; \\ Michel Marcus, May 16 2016 (PARI) a(n) = sumdigits(n, 4) % 4; \\ Michel Marcus, Jul 04 2018 CROSSREFS Cf. A010060, A141803, A287552, A287553, A287554, A287555. Sequence in context: A227552 A205003 A159956 * A047896 A073645 A294180 Adjacent sequences:  A053836 A053837 A053838 * A053840 A053841 A053842 KEYWORD base,nonn AUTHOR Henry Bottomley, Mar 28 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 17:36 EST 2019. Contains 329865 sequences. (Running on oeis4.)