This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048573 a(n) = a(n-1) + 2*a(n-2), a(0)=2, a(1)=3. 9
 2, 3, 7, 13, 27, 53, 107, 213, 427, 853, 1707, 3413, 6827, 13653, 27307, 54613, 109227, 218453, 436907, 873813, 1747627, 3495253, 6990507, 13981013, 27962027, 55924053, 111848107, 223696213, 447392427, 894784853, 1789569707 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Number of positive integers requiring exactly n signed bits in the modified non-adjacent form representation. - Ralf Stephan, Aug 02 2003 The n-th entry (n>1) of the sequence is equal to the 1,1-entry of the n-th power of the unnormalized 4 X 4 Haar matrix: [1 1 1 0 / 1 1 -1 0 / 1 1 0 1 / 1 1 0 -1]. - Simone Severini, Oct 27 2004 Pisano period lengths:  1, 1, 6, 2, 2, 6, 6, 2, 18, 2, 10, 6, 12, 6, 6, 2, 8, 18, 18, 2, ... - R. J. Mathar, Aug 10 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 W. Bosma, Signed bits and fast exponentiation, Journal de théorie des nombres de Bordeaux, 13 no. 1 (2001), p. 27-41, Karl Dilcher, Hayley Tomkins, Square classes and divisibility properties of Stern polynomials, Integers (2018) 18, Article #A29. Saad Mneimneh, Simple Variations on the Tower of Hanoi to Guide the Study of Recurrences and Proofs by Induction, Department of Computer Science, Hunter College, CUNY, 2019. S. Northshield, Stern's diatomic sequence 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, ..., Amer. Math. Monthly, 117 (2010), 581-598. Index entries for linear recurrences with constant coefficients, signature (1,2). FORMULA G.f.: (2 + x) / (1 - x - 2*x^2). a(n) = (5*2^n + (-1)^n) / 3. a(n) = 2^(n+1) - A001045(n). a(n) = A084170(n)+1 = abs(A083581(n)-3) = A081254(n+1) - A081254(n) = A084214(n+2)/2. a(n) = 2*A001045(n+1) + A001045(n) (note that 2 is the limit of A001045(n+1)/A001045(n)). - Paul Barry, Sep 14 2009 Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=-charpoly(A,-1). - Milan Janjic, Jan 27 2010 Equivalently, with different offset, a(n) = b(n+1) with b(0)=1 and b(n) = Sum_{i=0..n-1} (-1)^i (1 + (-1)^i b(i)). - Olivier Gérard, Jul 30 2012 a(n) = A000975(n-2)*10 + 5 + 2*(-1)^(n-2), a(0)=2, a(1)=3. - Yuchun Ji, Mar 18 2019 a(n+1) = Sum_{i=0..n} a(i) + 1 + (1-(-1)^n)/2, a(0)=2. - Yuchun Ji, Apr 10 2019 a(n) = 2^n + J(n+1) = J(n+2) + J(n+1) - J(n), where J is A001045. - Yuchun Ji, Apr 10 2019 EXAMPLE G.f. = 2 + 3*x + 7*x^2 + 13*x^3 + 27*x^4 + 53*x^5 + 107*x^6 + 213*x^7 + 427*x^8 + ... MATHEMATICA LinearRecurrence[{1, 2}, {2, 3}, 40] (* Harvey P. Dale, Dec 11 2017 *) PROG (PARI) {a(n) = if( n<0, 0, (5*2^n + (-1)^n) / 3)} (PARI) {a(n) = if (n<0 , 0, if( n<2, n+2, a(n-1) + 2*a(n-2)))} (MAGMA) [(5*2^n+(-1)^n)/3: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011 (Sage) [(5*2^n+(-1)^n)/3 for n in range(35)] # G. C. Greubel, Apr 10 2019 CROSSREFS Cf. A001045, A081254, A083581, A084170, A084214. Sequence in context: A024504 A256494 A088172 * A221834 A006946 A074129 Adjacent sequences:  A048570 A048571 A048572 * A048574 A048575 A048576 KEYWORD nonn,easy AUTHOR Michael Somos, Jun 17 1999 EXTENSIONS Formula of Milan Janjic moved here from wrong sequence by Paul D. Hanna, May 29 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 19:53 EDT 2019. Contains 328319 sequences. (Running on oeis4.)