The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135318 a(n) = a(n-2) + 2*a(n-4), with a[0..3] = [1, 1, 1, 2]. 2
 1, 1, 1, 2, 3, 4, 5, 8, 11, 16, 21, 32, 43, 64, 85, 128, 171, 256, 341, 512, 683, 1024, 1365, 2048, 2731, 4096, 5461, 8192, 10923, 16384, 21845, 32768, 43691, 65536, 87381, 131072, 174763, 262144, 349525 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Shifted Jacobsthal recurrence. From L. Edson Jeffery, Apr 21 2011: (Start) Let U be the unit-primitive matrix (see [Jeffery]) U=U_(6,2)= (0 0 1) (0 2 0) (2 0 1), let i in {0,1}, m>=0 an integer and n=2*m+i. Then a(n)=a(2*m+i)=Sum_{j=0..2} (U^m)_(i,j). (End) LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..5000 Minerva Catral et al., Generalizing Zeckendorf's Theorem: The Kentucky Sequence, arXiv:1409.0488 [math.NT], 2014. See 1.3 p. 2, same sequence without the first 2 terms. L. E. Jeffery, Unit-primitive matrices. Index entries for linear recurrences with constant coefficients, signature (0,1,0,2). FORMULA From R. J. Mathar, Feb 19 2008: (Start) O.g.f.: [1/(1+x^2)+(-2-3*x)/(2*x^2-1)]/3. a(2n) = A001045(n+1). a(2n+1) = A000079(n). (End) From L. Edson Jeffery, Apr 21 2011: (Start) G.f.: (1+x+x^3)/((1+x^2)*(1-2*x^2)). a(n) = (((-i)^(n+1)-i^(n+1))*2*i*sqrt(2)+3*(1+(-1)^(n+1))*2^((n+2)/2)+(1-(-1)^(n+1))*2^((n+5)/2))/(12*sqrt(2)), where i=sqrt(-1). (End) a(n) = (2^floor(n/2)*(5-(-1)^n)+(-1)^floor(n/2)*(1+(-1)^n))/6 = (A016116(n)*A010711(n)+2*A056594(n))/6. - Bruno Berselli, Apr 21 2011 a(2n) = 2*a(2n-1) - a(2n-2); a(2n+1) = a(2n) + a(2n-2). - Richard R. Forberg, Aug 19 2013 EXAMPLE Let i=0 and m=3. Then U^3 = (2,0,3;0,8,0;6,0,5), and the first-row sum (corresponding to i=0) is 2 + 0 + 3 = 5. Hence a(n) = a(2*m+i) = a(2*3+0) = a(6) = 2 + 3 = 5. MATHEMATICA LinearRecurrence[{0, 1, 0, 2}, {1, 1, 1, 2}, 40] (* Harvey P. Dale, Oct 14 2015 *) PROG (MAGMA) [(2^Floor(n/2)*(5-(-1)^n)+(-1)^Floor(n/2)*(1+(-1)^n))/6: n in [0..50]]; // Vincenzo Librandi, Aug 10 2011 CROSSREFS Sequence in context: A302592 A078762 A103262 * A210671 A189761 A329576 Adjacent sequences:  A135315 A135316 A135317 * A135319 A135320 A135321 KEYWORD nonn AUTHOR Paul Curtz, Feb 16 2008 EXTENSIONS More terms from R. J. Mathar, Feb 19 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 21:20 EST 2020. Contains 338641 sequences. (Running on oeis4.)