The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256494 Expansion of -x^2*(x^3+x-1) / ((x-1)*(x+1)*(2*x-1)*(x^2+1)). 3
 0, 1, 1, 2, 3, 7, 13, 26, 51, 103, 205, 410, 819, 1639, 3277, 6554, 13107, 26215, 52429, 104858, 209715, 419431, 838861, 1677722, 3355443, 6710887, 13421773, 26843546, 53687091, 107374183, 214748365, 429496730, 858993459, 1717986919, 3435973837, 6871947674, 13743895347, 27487790695, 54975581389, 109951162778 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Previous name was: Golden Book's Level Leap Sequence. x-positions a(n) of transition from phase 1 (I I) to 2 (/\) for the Golden Book’s y-position n. LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Armands Strazds, The Golden Book, 1990. [broken link] Index entries for linear recurrences with constant coefficients, signature (2,0,0,1,-2). FORMULA a(n) = 2 * a(n - 1) + r((n - 1) % 4); r = array(1, -1, 0, -1). From Colin Barker, Apr 09 2015: (Start) a(n) = 2*a(n-1)+a(n-4)-2*a(n-5) for n>5. a(n) = (5+5*(-1)^n-(1+2*i)*(-i)^n-(1-i*2)*i^n+2^(1+n))/20 for n>0 where i=sqrt(-1). G.f.: -x^2*(x^3+x-1) / ((x-1)*(x+1)*(2*x-1)*(x^2+1)). (End) MATHEMATICA Join[{0}, LinearRecurrence[{2, 0, 0, 1, - 2}, {1, 1, 2, 3, 7}, 50]] (* Vincenzo Librandi, Dec 25 2015 *) PROG (PHP) \$r = array(1, -1, 0, -1); \$a[0] = 0; for (\$n = 1; \$n < 40; \$n++) { \$a[\$n] = 2 * \$a[\$n - 1] + \$r[(\$n - 1) % 4]; } echo(implode(", ", \$a)); (PARI) concat(0, Vec(-x^2*(x^3+x-1)/((x-1)*(x+1)*(2*x-1)*(x^2+1)) + O(x^100))) \\ Colin Barker, Apr 09 2015 (Magma) I:=[0, 1, 1, 2, 3, 7]; [n le 6 select I[n] else 2*Self(n-1)+Self(n-4)-2*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 25 2015 CROSSREFS Cf. A248646, A001045. Sequence in context: A213967 A128695 A024504 * A344432 A088172 A048573 Adjacent sequences: A256491 A256492 A256493 * A256495 A256496 A256497 KEYWORD nonn,easy AUTHOR Armands Strazds, Mar 30 2015 EXTENSIONS New name (using g.f. from Colin Barker) from Joerg Arndt, Dec 26 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 7 14:16 EST 2023. Contains 360123 sequences. (Running on oeis4.)