The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256493 Number of factorizations of m^3 into at most 3 factors, where m is a product of exactly n distinct primes. 2
 1, 3, 19, 171, 1675, 16683, 166699, 1666731, 16666795, 166666923, 1666667179, 16666667691, 166666668715, 1666666670763, 16666666674859, 166666666683051, 1666666666699435, 16666666666732203, 166666666666797739, 1666666666666928811, 16666666666667190955 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also the number of n-partite partitions of (3)^n into at most 3 n-tuples. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (13,-32,20). FORMULA G.f.: -(12*x^2-10*x+1)/((x-1)*(2*x-1)*(10*x-1)). a(n) = (10^n + 3*2^n + 2)/6. EXAMPLE The a(1) = 3 factorizations of 2^3 into at most 3 factors are: 8, 2*4, 2*2*2. The a(2) = 19 factorizations of (2*3)^3 into at most 3 factors are: 216, 2*108, 3*72, 4*54, 6*36, 8*27, 9*24, 12*18, 2*2*54, 2*3*36, 2*4*27, 2*6*18, 2*9*12, 3*3*24, 3*4*18, 3*6*12, 3*8*9, 4*6*9, 6*6*6. MAPLE a:= n-> (10^n + 3*2^n + 2)/6: seq(a(n), n=0..30); MATHEMATICA LinearRecurrence[{13, -32, 20}, {1, 3, 19}, 30] (* Harvey P. Dale, Dec 30 2019 *) CROSSREFS Row n=3 of A256384. Sequence in context: A094956 A080894 A143768 * A353256 A275283 A349768 Adjacent sequences: A256490 A256491 A256492 * A256494 A256495 A256496 KEYWORD nonn,easy AUTHOR Alois P. Heinz, Mar 30 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 7 02:40 EST 2023. Contains 360111 sequences. (Running on oeis4.)