login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A280560 a(n) = (-1)^n * 2 if n!=0, with a(0) = 1. 4
1, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..74.

Index entries for linear recurrences with constant coefficients, signature (-1).

FORMULA

Euler transform of length 2 sequence [-2, 1].

Moebius transform is length 2 sequence [-2, 4].

a(n) = -2*A033999(n) if n!=0.

G.f.: (1 - x) / (1 + x) = 1 / (1 + 2*x / (1 - x)) = 1 - 2*x / (1 + x).

E.g.f.: 2*exp(-x) - 1.

a(n) = a(-n) for all n in Z.

a(n) = A084100(2*n) = A084100(2*n + 1), if n>=0.

a(n) = (-1)^n * A040000(n). a(2*n) = A040000(n).

Convolution inverse is A040000.

EXAMPLE

G.f. = 1 - 2*x + 2*x^2 - 2*x^3 + 2*x^4 - 2*x^5 + 2*x^6 - 2*x^7 + 2*x^8 - 2*x^9 + ...

MATHEMATICA

a[ n_] := (-1)^n (2 - Boole[n == 0]);

PadRight[{1}, 120, {2, -2}] (* Harvey P. Dale, Jun 04 2019 *)

PROG

(PARI) {a(n) = (-1)^n * if(n, 2, 1)};

(MAGMA) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 - x)/(1+x))); // G. C. Greubel, Jul 29 2018

CROSSREFS

Cf. A033999, A040000, A084100.

Sequence in context: A004218 A044931 A178487 * A044932 A211662 A211669

Adjacent sequences:  A280557 A280558 A280559 * A280561 A280562 A280563

KEYWORD

sign

AUTHOR

Michael Somos, Jan 05 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 06:53 EDT 2019. Contains 325192 sequences. (Running on oeis4.)